
Jolyon Troscianko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1950618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensoryâ€based quantification of male colour patterns in Trinidadian guppies reveals no support for parallel phenotypic evolution in multivariate trait space. Molecular Ecology, 2022, 31, 1337-1357.	3.9	10
2	Automatic identification of bird females using egg phenotype. Zoological Journal of the Linnean Society, 2022, 195, 33-44.	2.3	7
3	CamoEvo: An open access toolbox for artificial camouflage evolution experiments. Evolution; International Journal of Organic Evolution, 2022, 76, 870-882.	2.3	3
4	The gaze of a social monkey is perceptible to conspecifics and predators but not prey. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	5
5	Chimpanzee (Pan troglodytes) gaze is conspicuous at ecologically-relevant distances. Scientific Reports, 2022, 12, .	3.3	10
6	Variable crab camouflage patterns defeat search image formation. Communications Biology, 2021, 4, 287.	4.4	14
7	Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators. Nature Communications, 2021, 12, 4163.	12.8	32
8	Hoverflies use a time-compensated sun compass to orientate during autumn migration. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211805.	2.6	12
9	The evolution of patterning during movement in a large-scale citizen science game. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202823.	2.6	4
10	Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods in Ecology and Evolution, 2020, 11, 316-332.	5.2	114
11	A Matador-like Predator Diversion Strategy Driven by Conspicuous Coloration in Guppies. Current Biology, 2020, 30, 2844-2851.e8.	3.9	6
12	A customizable, low ost optomotor apparatus: A powerful tool for behaviourally measuring visual capability. Methods in Ecology and Evolution, 2020, 11, 1319-1324.	5.2	12
13	Multimodal mimicry of hosts in a radiation of parasitic finches*. Evolution; International Journal of Organic Evolution, 2020, 74, 2526-2538.	2.3	15
14	The Size, Symmetry, and Color Saturation of a Male Guppy's Ornaments Forecast His Resistance to Parasites. American Naturalist, 2020, 196, 597-608.	2.1	11
15	Male characteristics as predictors of genital color and display variation in vervet monkeys. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	4
16	Rufous Common Cuckoo chicks are not always female. Journal of Ornithology, 2019, 160, 155-163.	1.1	5
17	Mimicry cannot explain rejection type in a host–brood parasite system. Animal Behaviour, 2019, 155, 111-118.	1.9	20
18	Background matching and disruptive coloration as habitat-specific strategies for camouflage.	3.3	57

JOLYON TROSCIANKO

#	Article	IF	CITATIONS
19	Sexual selection drives the evolution of male wing interference patterns. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182850.	2.6	27
20	Evolution of correlated complexity in the radically different courtship signals of birds-of-paradise. PLoS Biology, 2018, 16, e2006962.	5.6	83
21	Camouflage strategies interfere differently with observer search images. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181386.	2.6	23
22	Individual egg camouflage is influenced by microhabitat selection and use of nest materials in ground-nesting birds. Behavioral Ecology and Sociobiology, 2018, 72, 1.	1.4	25
23	Testing the feasibility of the startle-first route to deimatism. Scientific Reports, 2018, 8, 10737.	3.3	19
24	The appearance of mimetic <i>Heliconius</i> butterflies to predators and conspecifics. Evolution; International Journal of Organic Evolution, 2018, 72, 2156-2166.	2.3	33
25	Dynamic eye colour as an honest signal of aggression. Current Biology, 2018, 28, R652-R653.	3.9	17
26	Quantifying camouflage: how to predict detectability from appearance. BMC Evolutionary Biology, 2017, 17, 7.	3.2	74
27	Insect herbivory may cause changes in the visual properties of leaves and affect the camouflage of herbivores to avian predators. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	13
28	Two ways to hide: predator and prey perspectives of disruptive coloration and background matching in jumping spiders. Biological Journal of the Linnean Society, 2017, 122, 752-764.	1.6	22
29	Egg mimicry by the Pacific koel: mimicry of one host facilitates exploitation of other hosts with similar egg types. Journal of Avian Biology, 2017, 48, 1414-1424.	1.2	10
30	Improvement of individual camouflage through background choice in ground-nesting birds. Nature Ecology and Evolution, 2017, 1, 1325-1333.	7.8	58
31	Relative advantages of dichromatic and trichromatic color vision in camouflage breaking. Behavioral Ecology, 2017, 28, 556-564.	2.2	28
32	Camouflage predicts survival in ground-nesting birds. Scientific Reports, 2016, 6, 19966.	3.3	119
33	Escape Distance in Ground-Nesting Birds Differs with Individual Level of Camouflage. American Naturalist, 2016, 188, 231-239.	2.1	41
34	Brood Parasitism Is Linked to Egg Pattern Diversity within and among Species of Australian Passerines. American Naturalist, 2016, 187, 351-362.	2.1	17
35	Nest covering in plovers: How modifying the visual environment influences egg camouflage. Ecology and Evolution, 2016, 6, 7536-7545.	1.9	24
36	Fitness costs associated with building and maintaining the burying beetle's carrion nest. Scientific Reports, 2016, 6, 35293.	3.3	16

JOLYON TROSCIANKO

#	Article	IF	CITATIONS
37	Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern. Methods in Ecology and Evolution, 2015, 6, 1320-1331.	5.2	355
38	Activity profiles and hook-tool use of New Caledonian crows recorded by bird-borne video cameras. Biology Letters, 2015, 11, 20150777.	2.3	17
39	Phenotype–environment matching in sand fleas. Biology Letters, 2015, 11, 20150494.	2.3	25
40	Changes in Women's Facial Skin Color over the Ovulatory Cycle are Not Detectable by the Human Visual System. PLoS ONE, 2015, 10, e0130093.	2.5	37
41	Color contrast and stability as key elements for effective warning signals. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	39
42	Motion dazzle and the effects of target patterning on capture success. BMC Evolutionary Biology, 2014, 14, 201.	3.2	43
43	A simple tool for calculating egg shape, volume and surface area from digital images. Ibis, 2014, 156, 874-878.	1.9	63
44	Programmable, miniature videoâ€loggers for deployment on wild birds and other wildlife. Methods in Ecology and Evolution, 2013, 4, 114-122.	5.2	38
45	Repeated targeting of the same hosts by a brood parasite compromises host egg rejection. Nature Communications, 2013, 4, 2475.	12.8	71
46	What is camouflage through distractive markings? A reply to Merilaita et al. (2013). Behavioral Ecology, 2013, 24, e1272-e1273.	2.2	9
47	Revealed by conspicuousness: distractive markings reduce camouflage. Behavioral Ecology, 2013, 24, 213-222.	2.2	42
48	Defeating Crypsis: Detection and Learning of Camouflage Strategies. PLoS ONE, 2013, 8, e73733.	2.5	54
49	Extreme binocular vision and a straight bill facilitate tool use in New Caledonian crows. Nature Communications, 2012, 3, 1110.	12.8	85
50	The Ecological Significance of Tool Use in New Caledonian Crows. Science, 2010, 329, 1523-1526.	12.6	82
51	Tool use by wild New Caledonian crows <i>Corvus moneduloides</i> at natural foraging sites. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1377-1385.	2.6	69
52	An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals. BMC Evolutionary Biology, 2009, 9, 240.	3.2	40
53	Grass-Stem Tool use in New Caledonian Crows <i>Corvus moneduloides</i> . Ardea, 2008, 96, 283-285.	0.6	12
54	Nest sanitation as an effective defence against brood parasitism. Animal Cognition, 0, , .	1.8	0