
Bradley J Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1950354/publications.pdf Version: 2024-02-01

RRADIEV | NELSON

#	Article	IF	CITATIONS
1	Microrobots for Minimally Invasive Medicine. Annual Review of Biomedical Engineering, 2010, 12, 55-85.	5.7	1,582
2	Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport. Advanced Materials, 2012, 24, 811-816.	11.1	983
3	OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation. IEEE Transactions on Robotics, 2010, 26, 1006-1017.	7.3	958
4	Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters, 2009, 94, .	1.5	932
5	The grand challenges of <i>Science Robotics</i> . Science Robotics, 2018, 3, .	9.9	787
6	Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 2013, 5, 1259-1272.	2.8	652
7	How Should Microrobots Swim?. International Journal of Robotics Research, 2009, 28, 1434-1447.	5.8	563
8	Soft micromachines with programmable motility and morphology. Nature Communications, 2016, 7, 12263.	5.8	495
9	Controlled In Vivo Swimming of a Swarm of Bacteriaâ€Like Microrobotic Flagella. Advanced Materials, 2015, 27, 2981-2988.	11.1	440
10	Characterizing the Swimming Properties of Artificial Bacterial Flagella. Nano Letters, 2009, 9, 3663-3667.	4.5	436
11	Autofocusing in computer microscopy: Selecting the optimal focus algorithm. Microscopy Research and Technique, 2004, 65, 139-149.	1.2	393
12	Combating COVID-19—The role of robotics in managing public health and infectious diseases. Science Robotics, 2020, 5, .	9.9	393
13	Fabrication and Characterization of Magnetic Microrobots for Threeâ€Đimensional Cell Culture and Targeted Transportation. Advanced Materials, 2013, 25, 5863-5868.	11.1	360
14	Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field. Journal of Microelectromechanical Systems, 2007, 16, 7-15.	1.7	322
15	Recent developments in magnetically driven micro- and nanorobots. Applied Materials Today, 2017, 9, 37-48.	2.3	312
16	Biological Cell Injection Using an Autonomous MicroRobotic System. International Journal of Robotics Research, 2002, 21, 861-868.	5.8	310
17	Nanomagnetic encoding of shape-morphing micromachines. Nature, 2019, 575, 164-168.	13.7	307
18	Robotics in the Small, Part I: Microbotics. IEEE Robotics and Automation Magazine, 2007, 14, 92-103.	2.2	298

#	Article	IF	CITATIONS
19	Mechanical property characterization of mouse zona pellucida. IEEE Transactions on Nanobioscience, 2003, 2, 279-286.	2.2	282
20	Artificial bacterial flagella for micromanipulation. Lab on A Chip, 2010, 10, 2203.	3.1	279
21	Magnetic Helical Microswimmers Functionalized with Lipoplexes for Targeted Gene Delivery. Advanced Functional Materials, 2015, 25, 1666-1671.	7.8	279
22	Controlled Propulsion and Cargo Transport of Rotating Nickel Nanowires near a Patterned Solid Surface. ACS Nano, 2010, 4, 6228-6234.	7.3	269
23	An Integrated Microrobotic Platform for Onâ€Demand, Targeted Therapeutic Interventions. Advanced Materials, 2014, 26, 952-957.	11.1	259
24	Trends in Microâ€∕Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials, 2021, 33, e2002047.	11.1	256
25	Magnetically actuated microrobots as a platform for stem cell transplantation. Science Robotics, 2019, 4, .	9.9	247
26	Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies. , 2007, 23, 1247-1252.		243
27	Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. IScience, 2018, 4, 236-246.	1.9	232
28	Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18267-18272.	3.3	230
29	3D Printed Enzymatically Biodegradable Soft Helical Microswimmers. Advanced Functional Materials, 2018, 28, 1804107.	7.8	222
30	Magnetic Helical Micromachines. Chemistry - A European Journal, 2013, 19, 28-38.	1.7	214
31	Artificial Swimmers Propelled by Acoustically Activated Flagella. Nano Letters, 2016, 16, 4968-4974.	4.5	209
32	Adaptive locomotion of artificial microswimmers. Science Advances, 2019, 5, eaau1532.	4.7	203
33	Undulatory Locomotion of Magnetic Multilink Nanoswimmers. Nano Letters, 2015, 15, 4829-4833.	4.5	202
34	Three-Dimensional Magnetic Manipulation of Micro- and Nanostructures for Applications in Life Sciences. IEEE Transactions on Magnetics, 2013, 49, 321-330.	1.2	200
35	Nanorobotic Spot Welding:Â Controlled Metal Deposition with Attogram Precision from Copper-Filled Carbon Nanotubes. Nano Letters, 2007, 7, 58-63.	4.5	194
36	Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery. Advanced Materials, 2017, 29, 1605458.	11.1	193

#	Article	IF	CITATIONS
37	Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today, 2018, 11, 13-21.	2.3	193
38	3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents. Advanced Materials, 2015, 27, 6644-6650.	11.1	192
39	Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests. Advanced Materials, 2016, 28, 533-538.	11.1	190
40	Small cale Machines Driven by External Power Sources. Advanced Materials, 2018, 30, e1705061.	11.1	186
41	Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Science Advances, 2021, 7, .	4.7	186
42	A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network. Soft Robotics, 2019, 6, 54-68.	4.6	183
43	Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents. International Journal of Robotics Research, 2010, 29, 613-636.	5.8	179
44	Artificial Bacterial Flagella for Remote ontrolled Targeted Singleâ€Cell Drug Delivery. Small, 2014, 10, 1953-1957.	5.2	178
45	Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nature Communications, 2017, 8, 770.	5.8	175
46	Magnetic cilia carpets with programmable metachronal waves. Nature Communications, 2020, 11, 2637.	5.8	172
47	Mobility Experiments With Microrobots for Minimally Invasive Intraocular Surgery. , 2013, 54, 2853.		170
48	Anomalous Coiling of SiGe/Si and SiGe/Si/Cr Helical Nanobelts. Nano Letters, 2006, 6, 1311-1317.	4.5	163
49	A decade retrospective of medical robotics research from 2010 to 2020. Science Robotics, 2021, 6, eabi8017.	9.9	158
50	3Dâ€Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron‣ike Cells. Advanced Functional Materials, 2020, 30, 1910323.	7.8	157
51	Fabrication and Characterization of Three-Dimensional InGaAs/GaAs Nanosprings. Nano Letters, 2006, 6, 725-729.	4.5	155
52	Multiwavelength Light-Responsive Au/B-TiO ₂ Janus Micromotors. ACS Nano, 2017, 11, 6146-6154.	7.3	155
53	Selective Trapping and Manipulation of Microscale Objects Using Mobile Microvortices. Nano Letters, 2012, 12, 156-160.	4.5	153
54	A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives. Journal of Micromechanics and Microengineering, 2002, 12, 832-840.	1.5	152

#	Article	IF	CITATIONS
55	Recent Advances in Wearable Transdermal Delivery Systems. Advanced Materials, 2018, 30, 1704530.	11.1	151
56	Soft Micro- and Nanorobotics. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 53-75.	7.5	145
57	A Six-Axis MEMS Force–Torque Sensor With Micro-Newton and Nano-Newtonmeter Resolution. Journal of Microelectromechanical Systems, 2009, 18, 433-441.	1.7	143
58	MOFBOTS: Metal–Organicâ€Frameworkâ€Based Biomedical Microrobots. Advanced Materials, 2019, 31, e1901592.	11.1	139
59	Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics Â. Plant Physiology, 2012, 158, 1514-1522.	2.3	135
60	Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Scientific Reports, 2017, 7, 4028.	1.6	131
61	Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration. Journal of Microelectromechanical Systems, 2005, 14, 4-11.	1.7	126
62	Magnetic control of continuum devices. International Journal of Robotics Research, 2017, 36, 68-85.	5.8	125
63	Hybrid Helical Magnetic Microrobots Obtained by 3D Templateâ€Assisted Electrodeposition. Small, 2014, 10, 1284-1288.	5.2	124
64	Shape-Switching Microrobots for Medical Applications: The Influence of Shape in Drug Delivery and Locomotion. ACS Applied Materials & Interfaces, 2015, 7, 6803-6811.	4.0	124
65	Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors. Journal of Solid State Chemistry, 2012, 185, 191-197.	1.4	123
66	Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies. IEEE Transactions on Electronics Packaging Manufacturing, 2000, 23, 123-131.	1.6	122
67	Vision-based force measurement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26, 290-298.	9.7	121
68	Hermetically Coated Superparamagnetic Fe ₂ O ₃ Particles with SiO ₂ 22 Nanofilms. Chemistry of Materials, 2009, 21, 2094-2100.	3.2	120
69	Targeted cargo delivery using a rotating nickel nanowire. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1074-1080.	1.7	120
70	Magnetically Driven Silverâ€Coated Nanocoils for Efficient Bacterial Contact Killing. Advanced Functional Materials, 2016, 26, 1063-1069.	7.8	118
71	Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Applied Physics Letters, 2014, 104, .	1.5	117
72	Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation. Scientific Reports, 2016, 6, 30713.	1.6	114

#	Article	IF	CITATIONS
73	Wireless resonant magnetic microactuator for untethered mobile microrobots. Applied Physics Letters, 2008, 92, .	1.5	112
74	Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sensors and Actuators B: Chemical, 2014, 196, 676-681.	4.0	109
75	Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications. Engineering, 2015, 1, 021-026.	3.2	109
76	Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Science Advances, 2019, 5, eaav4803.	4.7	109
77	The rise of robots in surgical environments during COVID-19. Nature Machine Intelligence, 2020, 2, 566-572.	8.3	108
78	The pollen tube: a soft shell with a hard core. Plant Journal, 2013, 73, 617-627.	2.8	106
79	B ₄ Câ€Nanowires/Carbonâ€Microfiber Hybrid Structures and Composites from Cotton Tâ€shirts. Advanced Materials, 2010, 22, 2055-2059.	11.1	104
80	Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility. Biomedical Microdevices, 2013, 15, 997-1003.	1.4	103
81	Highly Efficient Coaxial TiO ₂ â€PtPd Tubular Nanomachines for Photocatalytic Water Purification with Multiple Locomotion Strategies. Advanced Functional Materials, 2016, 26, 6995-7002.	7.8	101
82	Magnetically driven Bi ₂ O ₃ /BiOCl-based hybrid microrobots for photocatalytic water remediation. Journal of Materials Chemistry A, 2015, 3, 23670-23676.	5.2	100
83	Chitosan Electrodeposition for Microrobotic Drug Delivery. Advanced Healthcare Materials, 2013, 2, 1037-1044.	3.9	99
84	Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors. Physical Chemistry Chemical Physics, 2012, 14, 16331.	1.3	98
85	Electroforming of Implantable Tubular Magnetic Microrobots for Wireless Ophthalmologic Applications. Advanced Healthcare Materials, 2015, 4, 209-214.	3.9	98
86	Cellular forces and matrix assembly coordinate fibrous tissue repair. Nature Communications, 2016, 7, 11036.	5.8	98
87	Surface-Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm. ACS Nano, 2018, 12, 6210-6217.	7.3	97
88	Sensor-based microassembly of hybrid MEMS devices. IEEE Control Systems, 1998, 18, 35-45.	1.0	95
89	Minimum Bounds on the Number of Electromagnets Required for Remote Magnetic Manipulation. IEEE Transactions on Robotics, 2015, 31, 714-722.	7.3	95
90	Bioinspired acousto-magnetic microswarm robots with upstream motility. Nature Machine Intelligence, 2021, 3, 116-124.	8.3	95

#	Article	IF	CITATIONS
91	Carbon nanotubes for nanorobotics. Nano Today, 2007, 2, 12-21.	6.2	94
92	Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine. Electrochimica Acta, 2011, 56, 1399-1408.	2.6	93
93	Nanocrystalline Electroplated Cu–Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior. Advanced Functional Materials, 2010, 20, 983-991.	7.8	92
94	Superparamagnetic Twistâ€Type Actuators with Shapeâ€Independent Magnetic Properties and Surface Functionalization for Advanced Biomedical Applications. Advanced Functional Materials, 2014, 24, 5269-5276.	7.8	92
95	Mobile Magnetic Nanocatalysts for Bioorthogonal Targeted Cancer Therapy. Advanced Functional Materials, 2018, 28, 1705920.	7.8	92
96	Magnetic Continuum Device with Variable Stiffness for Minimally Invasive Surgery. Advanced Intelligent Systems, 2020, 2, 1900086.	3.3	92
97	A Supervisory Wafer-Level 3D Microassembly System for Hybrid MEMS Fabrication. Journal of Intelligent and Robotic Systems: Theory and Applications, 2003, 37, 43-68.	2.0	90
98	Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Materials Horizons, 2019, 6, 1512-1516.	6.4	88
99	Nearâ€Infrared Lightâ€Sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cellâ€Instructive 3D Microenvironments. Advanced Materials, 2018, 30, 1705564.	11.1	87
100	A Magnetically Controlled Wireless Optical Oxygen Sensor for Intraocular Measurements. IEEE Sensors Journal, 2008, 8, 29-37.	2.4	86
101	Force and vision resolvability for assimilating disparate sensory feedback. IEEE Transactions on Automation Science and Engineering, 1996, 12, 714-731.	2.4	84
102	Imaging Technologies for Biomedical Micro―and Nanoswimmers. Advanced Materials Technologies, 2019, 4, 1800575.	3.0	83
103	Assembly, Disassembly, and Anomalous Propulsion of Microscopic Helices. Nano Letters, 2013, 13, 4263-4268.	4.5	81
104	Six degree-of-freedom hand/eye visual tracking with uncertain parameters. IEEE Transactions on Automation Science and Engineering, 1995, 11, 725-732.	2.4	80
105	3D Fabrication of Fully Iron Magnetic Microrobots. Small, 2019, 15, e1805006.	5.2	79
106	Robust Electromagnetic Control of Microrobots Under Force and Localization Uncertainties. IEEE Transactions on Automation Science and Engineering, 2014, 11, 310-316.	3.4	78
107	Magnetically guided capsule endoscopy. Medical Physics, 2017, 44, e91-e111.	1.6	78
108	Indirect 3D and 4D Printing of Soft Robotic Microstructures. Advanced Materials Technologies, 2019, 4, 1900332.	3.0	78

#	Article	IF	CITATIONS
109	A Capsuleâ€Type Microrobot with Pickâ€andâ€Drop Motion for Targeted Drug and Cell Delivery. Advanced Healthcare Materials, 2018, 7, e1700985.	3.9	77
110	Strategies for Increasing the Tracking Region of an Eye-in-Hand System by Singularity and Joint Limit Avoidance. International Journal of Robotics Research, 1995, 14, 255-269.	5.8	76
111	Metal–Organic Frameworks in Motion. Chemical Reviews, 2020, 120, 11175-11193.	23.0	75
112	Artificial Acoustoâ€Magnetic Soft Microswimmers. Advanced Materials Technologies, 2017, 2, 1700050.	3.0	74
113	Magnetoelectrically Driven Catalytic Degradation of Organics. Advanced Materials, 2019, 31, e1901378.	11.1	74
114	Mechanical Analysis of Chorion Softening in Prehatching Stages of Zebrafish Embryos. IEEE Transactions on Nanobioscience, 2006, 5, 89-94.	2.2	73
115	Tutorial - Robotics in the small Part II: Nanorobotics. IEEE Robotics and Automation Magazine, 2007, 14, 111-121.	2.2	72
116	A micro-particle positioning technique combining an ultrasonic manipulator and a microgripper. Journal of Micromechanics and Microengineering, 2006, 16, 1562-1570.	1.5	70
117	Flagella-like Propulsion for Microrobots Using a Nanocoil and a Rotating Electromagnetic Field. , 2007, , .		68
118	Towards nanotube linear servomotors. IEEE Transactions on Automation Science and Engineering, 2006, 3, 228-235.	3.4	67
119	Progress in robotics for combating infectious diseases. Science Robotics, 2021, 6, .	9.9	67
120	Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators. Journal of Magnetism and Magnetic Materials, 2005, 292, 49-58.	1.0	66
121	Piezoresistive InGaAs/GaAs Nanosprings with Metal Connectors. Nano Letters, 2009, 9, 554-561.	4.5	66
122	4D printing and robotics. Science Robotics, 2018, 3, .	9.9	66
123	Motile Piezoelectric Nanoeels for Targeted Drug Delivery. Advanced Functional Materials, 2019, 29, 1808135.	7.8	66
124	Real-time Rigid-body Visual Tracking in a Scanning Electron Microscope. International Journal of Robotics Research, 2009, 28, 498-511.	5.8	65
125	Visually Servoing Magnetic Intraocular Microdevices. IEEE Transactions on Robotics, 2012, 28, 798-809.	7.3	64
126	Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating. Journal of Materials Chemistry B, 2014, 2, 357-362.	2.9	64

#	Article	IF	CITATIONS
127	Magnetoelectric micromachines with wirelessly controlled navigation and functionality. Materials Horizons, 2016, 3, 113-118.	6.4	64
128	Biodegradable Metal–Organic Frameworkâ€Based Microrobots (MOFBOTs). Advanced Healthcare Materials, 2020, 9, e2001031.	3.9	64
129	Calibration of a parametric model of an optical microscope. Optical Engineering, 1999, 38, 1989.	0.5	63
130	Grain Boundary Segregation and Interdiffusion Effects in Nickel–Copper Alloys: An Effective Means to Improve the Thermal Stability of Nanocrystalline Nickel. ACS Applied Materials & Interfaces, 2011, 3, 2265-2274.	4.0	63
131	Highâ€Resolution SPECT Imaging of Stimuliâ€Responsive Soft Microrobots. Small, 2019, 15, e1900709.	5.2	62
132	A high-aspect-ratio two-axis electrostatic microactuator with extended travel range. Sensors and Actuators A: Physical, 2002, 102, 49-60.	2.0	61
133	Three-dimensional nanosprings for electromechanical sensors. Sensors and Actuators A: Physical, 2006, 130-131, 54-61.	2.0	61
134	MEMS capacitive force sensors for cellular and flight biomechanics. Biomedical Materials (Bristol), 2007, 2, S16-S22.	1.7	61
135	Noncontact manipulation using a transversely magnetized rolling robot. Applied Physics Letters, 2013, 103, .	1.5	59
136	Acoustically Mediated Controlled Drug Release and Targeted Therapy with Degradable 3D Porous Magnetic Microrobots. Advanced Healthcare Materials, 2021, 10, e2001096.	3.9	59
137	Dumbbell Fluidic Tweezers for Dynamical Trapping and Selective Transport of Microobjects. Advanced Functional Materials, 2017, 27, 1604571.	7.8	58
138	A photopatternable superparamagnetic nanocomposite: Material characterization and fabrication of microstructures. Sensors and Actuators B: Chemical, 2011, 156, 433-443.	4.0	57
139	Catalytic Locomotion of Core–Shell Nanowire Motors. ACS Nano, 2016, 10, 9983-9991.	7.3	57
140	Batch fabrication of carbon nanotube bearings. Nanotechnology, 2007, 18, 075703.	1.3	56
141	A comparison between fine-grained and nanocrystalline electrodeposited Cu–Ni films. Insights on mechanical and corrosion performance. Surface and Coatings Technology, 2011, 205, 5285-5293.	2.2	56
142	A smart multifunctional drug delivery nanoplatform for targeting cancer cells. Nanoscale, 2016, 8, 12723-12728.	2.8	56
143	Microrobots: a new era in ocular drug delivery. Expert Opinion on Drug Delivery, 2014, 11, 1815-1826.	2.4	54
144	A Needleâ€Type Microrobot for Targeted Drug Delivery by Affixing to a Microtissue. Advanced Healthcare Materials, 2020, 9, e1901697.	3.9	54

#	Article	IF	CITATIONS
145	Localized non-contact manipulation using artificial bacterial flagella. Applied Physics Letters, 2011, 99,	1.5	52
146	Polymer-Based Wireless Resonant Magnetic Microrobots. IEEE Transactions on Robotics, 2014, 30, 26-32.	7.3	52
147	MiniMag: A Hemispherical Electromagnetic System for 5-DOF Wireless Micromanipulation. Springer Tracts in Advanced Robotics, 2014, , 317-329.	0.3	52
148	Magnetic helical micro-/nanomachines: Recent progress and perspective. Matter, 2022, 5, 77-109.	5.0	52
149	Calibration of Multi-Axis MEMS Force Sensors Using the Shape-From-Motion Method. IEEE Sensors Journal, 2007, 7, 344-351.	2.4	51
150	Helical and Tubular Lipid Microstructures that are Electroless oated with CoNiReP for Wireless Magnetic Manipulation. Small, 2012, 8, 1498-1502.	5.2	51
151	In situ construction of potato starch based carbon nanofiber/activated carbon hybrid structure for high-performance electrical double layer capacitor. Journal of Power Sources, 2012, 207, 199-204.	4.0	50
152	Model-Based Calibration for Magnetic Manipulation. IEEE Transactions on Magnetics, 2017, 53, 1-6.	1.2	50
153	3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy. Nature Communications, 2021, 12, 2583.	5.8	50
154	A CAD model based tracking system for visually guided microassembly. Robotica, 2005, 23, 409-418.	1.3	49
155	Travel range extension of a MEMS electrostatic microactuator. IEEE Transactions on Control Systems Technology, 2005, 13, 138-145.	3.2	49
156	Three-axis micro-force sensor with sub-micro-Newton measurement uncertainty and tunable force range. Journal of Micromechanics and Microengineering, 2010, 20, 025011.	1.5	49
157	Robotically controlled microprey to resolve initial attack modes preceding phagocytosis. Science Robotics, 2017, 2, .	9.9	49
158	Magnetic quadrupole assemblies with arbitrary shapes and magnetizations. Science Robotics, 2019, 4, .	9.9	49
159	In Vitro Oxygen Sensing Using Intraocular Microrobots. IEEE Transactions on Biomedical Engineering, 2012, 59, 3104-3109.	2.5	48
160	Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation. Advanced Functional Materials, 2013, 23, 823-831.	7.8	48
161	Measuring the Mechanical Properties of Plant Cell Walls. Plants, 2015, 4, 167-182.	1.6	48
162	Mechanically interlocked 3D multi-material micromachines. Nature Communications, 2020, 11, 5957.	5.8	48

#	Article	IF	CITATIONS
163	Optomechatronic Design of Microassembly Systems for Manufacturing Hybrid Microsystems. IEEE Transactions on Industrial Electronics, 2005, 52, 1013-1023.	5.2	46
164	Shaping Nanoelectrodes for High-Precision Dielectrophoretic Assembly of Carbon Nanotubes. IEEE Nanotechnology Magazine, 2009, 8, 449-456.	1.1	46
165	Micro- and Nanorobots Swimming in Heterogeneous Liquids. ACS Nano, 2014, 8, 8718-8724.	7.3	46
166	Magnetic Control of a Flexible Needle in Neurosurgery. IEEE Transactions on Biomedical Engineering, 2021, 68, 616-627.	2.5	46
167	Nanotube Fluidic Junctions: Internanotube Attogram Mass Transport through Walls. Nano Letters, 2009, 9, 210-214.	4.5	45
168	On-the-fly catalytic degradation of organic pollutants using magneto-photoresponsive bacteria-templated microcleaners. Journal of Materials Chemistry A, 2019, 7, 24847-24856.	5.2	45
169	A Submillimeter Continuous Variable Stiffness Catheter for Compliance Control. Advanced Science, 2021, 8, e2101290.	5.6	45
170	A Survey on Swarm Microrobotics. IEEE Transactions on Robotics, 2022, 38, 1531-1551.	7.3	45
171	Cooperative manipulation and transport of microobjects using multiple helical microcarriers. RSC Advances, 2014, 4, 26771-26776.	1.7	44
172	A Magnetically Navigated Microcannula for Subretinal Injections. IEEE Transactions on Biomedical Engineering, 2021, 68, 119-129.	2.5	44
173	Biodegradable Small‣cale Swimmers for Biomedical Applications. Advanced Materials, 2021, 33, e2102049.	11.1	44
174	Generating mobile fluidic traps for selective three-dimensional transport of microobjects. Applied Physics Letters, 2014, 105, .	1.5	43
175	Microfluidic-Based Droplet and Cell Manipulations Using Artificial Bacterial Flagella. Micromachines, 2016, 7, 25.	1.4	43
176	MEMS FOR CELLULAR FORCE MEASUREMENTS AND MOLECULAR DETECTION. International Journal of Information Acquisition, 2004, 01, 23-32.	0.2	42
177	A Microassembly System for the Flexible Assembly of Hybrid Robotic Mems Devices. International Journal of Optomechatronics, 2009, 3, 69-90.	3.3	42
178	Comparison, optimization, and limitations of magnetic manipulation systems. Journal of Micro-Bio Robotics, 2013, 8, 107-120.	2.1	42
179	Controlled Propulsion of Twoâ€Dimensional Microswimmers in a Precessing Magnetic Field. Small, 2018, 14, e1800722.	5.2	42
180	Thermoset Shape Memory Polymer Variable Stiffness 4D Robotic Catheters. Advanced Science, 2022, 9, e2103277.	5.6	42

#	Article	IF	CITATIONS
181	Toward targeted retinal drug delivery with wireless magnetic microrobots. , 2008, , .		41
182	Strategies for single particle manipulation using acoustic and flow fields. Ultrasonics, 2010, 50, 247-257.	2.1	41
183	Superparamagnetic photocurable nanocomposite for the fabrication of microcantilevers. Journal of Micromechanics and Microengineering, 2011, 21, 025023.	1.5	41
184	Voltageâ€Induced Coercivity Reduction in Nanoporous Alloy Films: A Boost toward Energyâ€Efficient Magnetic Actuation. Advanced Functional Materials, 2017, 27, 1701904.	7.8	41
185	Fabrication and characterization of freestanding Si/Cr micro- and nanospirals. Microelectronic Engineering, 2006, 83, 1237-1240.	1.1	40
186	Non-ideal swimming of artificial bacterial flagella near a surface. , 2010, , .		40
187	Fabrication of Segmented Au/Co/Au Nanowires: Insights in the Quality of Co/Au Junctions. ACS Applied Materials & Interfaces, 2014, 6, 14583-14589.	4.0	40
188	Investigation of Magnetotaxis of Reconfigurable Microâ€Origami Swimmers with Competitive and Cooperative Anisotropy. Advanced Functional Materials, 2018, 28, 1802110.	7.8	40
189	A Variable Stiffness Magnetic Catheter Made of a Conductive Phaseâ€Change Polymer for Minimally Invasive Surgery. Advanced Functional Materials, 2022, 32, .	7.8	40
190	Robotic visual servoing and robotic assembly tasks. IEEE Robotics and Automation Magazine, 1996, 3, 23-31.	2.2	39
191	Integrating Optical Force Sensing with Visual Servoing for Microassembly. Journal of Intelligent and Robotic Systems: Theory and Applications, 2000, 28, 259-276.	2.0	39
192	OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. , 2010, , .		39
193	Effects of the anion in glycine-containing electrolytes on the mechanical properties of electrodeposited Co–Ni films. Materials Chemistry and Physics, 2011, 130, 1380-1386.	2.0	39
194	Enhanced catalytic degradation of organic pollutants by multi-stimuli activated multiferroic nanoarchitectures. Nano Research, 2020, 13, 2183-2191.	5.8	38
195	Quantifying growth mechanics of living, growing plant cells in situ using microrobotics. Micro and Nano Letters, 2011, 6, 311.	0.6	37
196	Estimation-Based Control of a Magnetic Endoscope without Device Localization. Journal of Medical Robotics Research, 2018, 03, 1850002.	1.0	36
197	Hard-magnetic cell microscaffolds from electroless coated 3D printed architectures. Materials Horizons, 2018, 5, 699-707.	6.4	36
198	Massively Parallelized Pollen Tube Guidance and Mechanical Measurements on a Lab-on-a-Chip Platform. PLoS ONE, 2016, 11, e0168138.	1.1	36

#	Article	IF	CITATIONS
199	Magnetically Actuated Medical Robots: An in vivo Perspective. Proceedings of the IEEE, 2022, 110, 1028-1037.	16.4	36
200	Magnetic Composite Electroplating for Depositing Micromagnets. Journal of Microelectromechanical Systems, 2006, 15, 330-337.	1.7	35
201	Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction. Journal of Applied Physics, 2016, 120, .	1.1	35
202	Colloidal polycrystalline monolayers under oscillatory shear. Physical Review E, 2017, 95, 012610.	0.8	35
203	Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 279-310.	7.5	35
204	<title>Adhesion force modeling and measurement for micromanipulation</title> ., 1998, , .		34
205	Protein crystal harvesting using the RodBot: a wireless mobile microrobot. Journal of Applied Crystallography, 2014, 47, 692-700.	1.9	34
206	Design and Evaluation of a Steerable Magnetic Sheath for Cardiac Ablations. IEEE Robotics and Automation Letters, 2018, 3, 2123-2128.	3.3	34
207	Supermolecular switches based on multiwalled carbon nanotubes. Applied Physics Letters, 2010, 96, .	1.5	33
208	3D hierarchically porous Cu–BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties. Nanoscale, 2013, 5, 12542.	2.8	33
209	Magnetic polymer composite artificial bacterial flagella. Bioinspiration and Biomimetics, 2014, 9, 046014.	1.5	33
210	Magnetic needle guidance for neurosurgery: Initial design and proof of concept. , 2016, , .		33
211	3D Manipulation and Imaging of Plant Cells using Acoustically Activated Microbubbles. Small Methods, 2019, 3, 1800527.	4.6	33
212	Electrochemical Codeposition of Magnetic Particle-Ferromagnetic Matrix Composites for Magnetic MEMS Actuator Applications. Journal of the Electrochemical Society, 2004, 151, C545.	1.3	32
213	Design and calibration of a MEMS sensor for measuring the force and torque acting on a magnetic microrobot. Journal of Micromechanics and Microengineering, 2008, 18, 025004.	1.5	32
214	Protective coatings for intraocular wirelessly controlled microrobots for implantation: Corrosion, cell culture, and <i>in vivo</i> animal tests. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 836-845.	1.6	32
215	The tethered magnet: Force and 5-DOF pose control for cardiac ablation. , 2017, , .		32
216	Optimization of Tail Geometry for the Propulsion of Soft Microrobots. IEEE Robotics and Automation Letters, 2017, 2, 727-732.	3.3	31

#	Article	IF	CITATIONS
217	Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device. Lab on A Chip, 2017, 17, 82-90.	3.1	31
218	Pulse-Reverse Electrodeposited Nanograinsized CoNiP Thin Films and Microarrays for MEMS Actuators. Journal of the Electrochemical Society, 2005, 152, C190.	1.3	30
219	Engineering Multiwalled Carbon Nanotubes Inside a Transmission Electron Microscope Using Nanorobotic Manipulation. IEEE Nanotechnology Magazine, 2008, 7, 508-517.	1.1	30
220	3D path planning for flexible needle steering in neurosurgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15, e1998.	1.2	30
221	Robotic manipulation using high bandwidth force and vision feedback. Mathematical and Computer Modelling, 1996, 24, 11-29.	2.0	29
222	Three-dimensional microfabrication for a multi-degree-of-freedom capacitive force sensor using fibre-chip coupling. Journal of Micromechanics and Microengineering, 2000, 10, 492-497.	1.5	29
223	Passive Wireless MEMS Microphones for Biomedical Applications. Journal of Biomechanical Engineering, 2005, 127, 1030-1034.	0.6	29
224	Single-Camera Focus-Based Localization of Intraocular Devices. IEEE Transactions on Biomedical Engineering, 2010, 57, 2064-2074.	2.5	29
225	Real-time automated characterization of 3D morphology and mechanics of developing plant cells. International Journal of Robotics Research, 2015, 34, 1136-1146.	5.8	29
226	Underpinning transport phenomena for the patterning of biomolecules. Chemical Society Reviews, 2019, 48, 1236-1254.	18.7	29
227	Dynamic Modeling of Magnetic Helical Microrobots. IEEE Robotics and Automation Letters, 2022, 7, 1682-1688.	3.3	29
228	A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells with Mass Production Capability. Small, 2022, 18, .	5.2	29
229	Mechanical property characterization of the zebrafish embryo chorion. , 2004, 2004, 5061-4.		28
230	Design of a Micro-Gripper and an Ultrasonic Manipulator for Handling Micron Sized Objects. , 2006, , .		28
231	Assembling reconfigurable endoluminal surgical systems: opportunities and challenges. International Journal of Biomechatronics and Biomedical Robotics, 2009, 1, 3.	0.1	28
232	Electroplated porous polypyrrole nanostructures patterned by colloidal lithography for drug-delivery applications. Nanoscale, 2012, 4, 3083.	2.8	28
233	Magnetic actuation of a cylindrical microrobot using time-delay-estimation closed-loop control: modeling and experiments. Smart Materials and Structures, 2014, 23, 035013.	1.8	28
234	Design and Control of In-Vivo Magnetic Microrobots. Lecture Notes in Computer Science, 2005, 8, 819-826.	1.0	28

#	Article	IF	CITATIONS
235	Experimental investigation of magnetic self-assembly for swallowable modular robots. , 2008, , .		27
236	Dual-Chirality Helical Nanobelts: Linear-to-Rotary Motion Converters for Three-Dimensional Microscopy. Journal of Microelectromechanical Systems, 2009, 18, 1047-1053.	1.7	27
237	Imageâ€based 3D reconstruction using helical nanobelts for localized rotations. Journal of Microscopy, 2010, 237, 122-135.	0.8	27
238	Science for robotics and robotics for science. Science Robotics, 2016, 1, .	9.9	27
239	Mineralizationâ€inspired Synthesis of Magnetic Zeolitic Imidazole Framework Composites. Angewandte Chemie - International Edition, 2019, 58, 13550-13555.	7.2	27
240	Nanorobotics for creating NEMS from 3D helical nanostructures. Journal of Physics: Conference Series, 2007, 61, 257-261.	0.3	26
241	RodBot: A rolling microrobot for micromanipulation. , 2015, , .		26
242	CANDYBOTS: A New Generation of 3Dâ€Printed Sugarâ€Based Transient Small‧cale Robots. Advanced Materials, 2020, 32, e2005652.	11.1	26
243	Fusing force and vision feedback for manipulating deformable objects. Journal of Field Robotics, 2001, 18, 103-117.	0.7	25
244	Fabrication of hard magnetic microarrays by electroless codeposition for MEMS actuators. Sensors and Actuators A: Physical, 2005, 118, 307-312.	2.0	25
245	Porous polysulfone coatings for enhanced drug delivery. Biomedical Microdevices, 2012, 14, 603-612.	1.4	25
246	Measuring localized viscoelasticity of the vitreous body using intraocular microprobes. Biomedical Microdevices, 2015, 17, 85.	1.4	25
247	Matryoshka-Inspired Micro-Origami Capsules to Enhance Loading, Encapsulation, and Transport of Drugs. Soft Robotics, 2019, 6, 150-159.	4.6	25
248	Reduced Etch Lag and High Aspect Ratios by Deep Reactive Ion Etching (DRIE). Micromachines, 2021, 12, 542.	1.4	25
249	Magmites - wireless resonant magnetic microrobots. , 2008, , .		24
250	Magnetoelastic Strain Sensor for Optimized Assessment of Bone Fracture Fixation. IEEE Sensors Journal, 2009, 9, 961-968.	2.4	24
251	Design and calibration of a microfabricated 6-axis force-torque sensor for microrobotic applications. , 2009, , .		24
252	Model Predictive Control of a Magnetically Guided Rolling Microrobot. IEEE Robotics and Automation Letters, 2016, 1, 455-460.	3.3	24

#	Article	IF	CITATIONS
253	Feeling the force: how pollen tubes deal with obstacles. New Phytologist, 2018, 220, 187-195.	3.5	24
254	Magnetically navigable 3D printed multifunctional microdevices for environmental applications. Additive Manufacturing, 2019, 28, 127-135.	1.7	24
255	Embedded Microbubbles for Acoustic Manipulation of Single Cells and Microfluidic Applications. Analytical Chemistry, 2021, 93, 9760-9770.	3.2	24
256	Autonomous Injection of Biological Cells Using Visual Servoing. , 2001, , 169-178.		24
257	Artificial Vitreous Humor for In Vitro Experiments. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6407-10.	0.5	23
258	3-D InGaAs/GaAs Helical Nanobelts for Optoelectronic Devices. International Journal of Optomechatronics, 2008, 2, 88-103.	3.3	23
259	Electrostatic Actuation and Electromechanical Switching Behavior of One-Dimensional Nanostructures. ACS Nano, 2009, 3, 2953-2964.	7.3	23
260	Manufacturing of a Hybrid Acoustic Transmitter Using an Advanced Microassembly System. IEEE Transactions on Industrial Electronics, 2009, 56, 2657-2666.	5.2	23
261	Monolithically Integrated Two-Axis Microtensile Tester for the Mechanical Characterization of Microscopic Samples. Journal of Microelectromechanical Systems, 2010, 19, 1223-1233.	1.7	23
262	Simulation of Rotary Motion Generated by Head-to-Head Carbon Nanotube Shuttles. IEEE/ASME Transactions on Mechatronics, 2013, 18, 130-137.	3.7	23
263	Artificial helical microswimmers with mastigoneme-inspired appendages. Biomicrofluidics, 2013, 7, 061101.	1.2	23
264	Tailoring Staircase-like Hysteresis Loops in Electrodeposited Trisegmented Magnetic Nanowires: a Strategy toward Minimization of Interwire Interactions. ACS Applied Materials & Interfaces, 2016, 8, 4109-4117.	4.0	23
265	Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary. ACS Applied Materials & amp; Interfaces, 2019, 11, 3214-3223.	4.0	23
266	Modeling Electromagnetic Navigation Systems. IEEE Transactions on Robotics, 2021, 37, 1009-1021.	7.3	23
267	Kinematic Analysis of Magnetic Continuum Robots Using Continuation Method and Bifurcation Analysis. IEEE Robotics and Automation Letters, 2018, 3, 3646-3653.	3.3	22
268	Analysis and design of wireless magnetically guided microrobots in body fluids. , 2004, , .		21
269	Ultrasound Emitter Localization in Heterogeneous Media. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 2867-70.	0.5	21
270	Modeling assembled-MEMS microrobots for wireless magnetic control. , 2008, , .		21

#	Article	IF	CITATIONS
271	Long-range linear elasticity and mechanical instability of self-scrolling binormal nanohelices under a uniaxial load. Nanoscale, 2011, 3, 4301.	2.8	21
272	The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns. Electrochemistry Communications, 2011, 13, 973-976.	2.3	21
273	Automated capsulorhexis based on a hybrid magnetic-mechanical actuation system. , 2014, , .		21
274	Electromagnetic Steering of a Magnetic Cylindrical Microrobot Using Optical Feedback Closed-Loop Control. International Journal of Optomechatronics, 2014, 8, 129-145.	3.3	21
275	Biotemplating of Metal–Organic Framework Nanocrystals for Applications in Smallâ€Scale Robotics. Advanced Functional Materials, 2022, 32, .	7.8	21
276	Robust CAD model based visual tracking for 3D microassembly using image space potentials. , 2004, , .		20
277	Electrodeposition of cobalt–yttrium hydroxide/oxide nanocomposite films from particle-free aqueous baths containing chloride salts. Electrochimica Acta, 2011, 56, 5142-5150.	2.6	20
278	Magnetically powered microrobots: a medical revolution underway?. European Journal of Cardio-thoracic Surgery, 2017, 51, ezw432.	0.6	20
279	Reconfigurable Magnetic Microswarm for Thrombolysis under Ultrasound Imaging. , 2020, , .		20
280	Nanoâ€3Dâ€Printed Photochromic Microâ€Objects. Small, 2021, 17, e2101337.	5.2	20
281	How Should Microrobots Swim?. Springer Tracts in Advanced Robotics, 2010, , 157-167.	0.3	20
282	Steerable Intravitreal Inserts for Drug Delivery: In Vitro and Ex Vivo Mobility Experiments. Lecture Notes in Computer Science, 2011, 14, 33-40.	1.0	20
283	An Electromagnetically Controllable Microrobotic Interventional System for Targeted, Realâ€Time Cardiovascular Intervention. Advanced Healthcare Materials, 2022, 11, e2102529.	3.9	20
284	Microassembly of hybrid magnetic MEMS. Journal of Micromechatronics, 2001, 1, 99-116.	1.9	19
285	Bending and buckling of rolled-up SiGeâ^•Si microtubes using nanorobotic manipulation. Applied Physics Letters, 2008, 92, .	1.5	19
286	The Influence of Shape on Parallel Self-Assembly. Entropy, 2009, 11, 643-666.	1.1	19
287	Characterization of Puncture Forces for Retinal Vein Cannulation. Journal of Medical Devices, Transactions of the ASME, 2011, 5, .	0.4	19
288	Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes. Nanotechnology, 2011, 22, 275713.	1.3	19

#	Article	IF	CITATIONS
289	Bio-inspired microrobots. Materials Today, 2012, 15, 463.	8.3	19
290	Templateâ€Assisted Electroforming of Fully Semiâ€Hardâ€Magnetic Helical Microactuators. Advanced Engineering Materials, 2018, 20, 1800179.	1.6	19
291	Ten robotics technologies of the year. Science Robotics, 2019, 4, .	9.9	19
292	REALITI: A Robotic Endoscope Automated via Laryngeal Imaging for Tracheal Intubation. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 157-164.	2.1	19
293	Biological Cell Injection Using an Autonomous MicroRobotic System. International Journal of Robotics Research, 2002, 21, 861-868.	5.8	19
294	Optically transparent gripper for microassembly. , 2001, 4568, 40.		18
295	Visual servoing and characterization of resonant magnetic actuators for decoupled locomotion of multiple untethered mobile microrobots. , 2009, , .		18
296	Dielectrophoretic assembly of carbon nanotube-based NEMS devices using floating electrodes. Microelectronic Engineering, 2011, 88, 2703-2706.	1.1	18
297	Swimming characteristics of helical microrobots in fibrous environments. , 2016, , .		18
298	A Magnetically Steered Endolaser Probe for Automated Panretinal Photocoagulation. IEEE Robotics and Automation Letters, 2019, 4, xvii-xxiii.	3.3	18
299	Magnetoelectric Effect in Hydrogen Harvesting: Magnetic Field as a Trigger of Catalytic Reactions. Advanced Materials, 2022, 34, e2110612.	11.1	18
300	Directed batch assembly of three-dimensional helical nanobelts through angular winding and electroplating. Nanotechnology, 2007, 18, 055304.	1.3	17
301	Ring closure of rolled-up Siâ^•Cr nanoribbons. Applied Physics Letters, 2008, 92, 143110.	1.5	17
302	Modeling the Motion of Microrobots on Surfaces Using Nonsmooth Multibody Dynamics. IEEE Transactions on Robotics, 2012, 28, 1058-1068.	7.3	17
303	Superparamagnetic swimming microrobots with adjusted magnetic anisotropy. , 2013, , .		17
304	Inkjet Printing of High Aspect Ratio Superparamagnetic SU-8 Microstructures with Preferential Magnetic Directions. Micromachines, 2014, 5, 583-593.	1.4	17
305	New materials for next-generation robots. Science Robotics, 2017, 2, .	9.9	17
306	A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. PLoS Biology, 2020, 18, e3000740.	2.6	17

#	Article	IF	CITATIONS
307	A Deformable Object Tracking Algorithm Based on the Boundary Element Method that is Robust to Occlusions and Spurious Edges. International Journal of Computer Vision, 2008, 78, 29-45.	10.9	16
308	Frequency response of lift control in Drosophila. Journal of the Royal Society Interface, 2010, 7, 1603-1616.	1.5	16
309	Adaptive backstepping and MEMS force sensor for an MRI-guided microrobot in the vasculature. , 2011, , ,		16
310	Movement of artificial bacterial flagella in heterogeneous viscous environments at the microscale. , 2012, , .		16
311	Redox Cycling for Passive Modification of Polypyrrole Surface Properties: Effects on Cell Adhesion and Proliferation. Advanced Healthcare Materials, 2013, 2, 591-598.	3.9	16
312	Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy. Nanoscale, 2014, 6, 10495-10499.	2.8	16
313	Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films. Nanoscale, 2016, 8, 1344-1351.	2.8	16
314	High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes. Lab on A Chip, 2017, 17, 671-680.	3.1	16
315	Shared control of a magnetic microcatheter for vitreoretinal targeted drug delivery. , 2017, , .		16
316	Chiral anisotropic magnetoresistance of ferromagnetic helices. Applied Physics Letters, 2018, 112, .	1.5	16
317	3D Printing of Thermoplasticâ€Bonded Soft―and Hardâ€Magnetic Composites: Magnetically Tuneable Architectures and Functional Devices. Advanced Intelligent Systems, 2019, 1, 1900069.	3.3	16
318	Helical Klinotactic Locomotion of Twoâ€Link Nanoswimmers with Dualâ€Function Drugâ€Loaded Soft Polysaccharide Hinges. Advanced Science, 2021, 8, 2004458.	5.6	16
319	Using Magnetic Fields to Navigate and Simultaneously Localize Catheters in Endoluminal Environments. IEEE Robotics and Automation Letters, 2022, 7, 7217-7223.	3.3	16
320	Self-folding mobile microrobots for biomedical applications. , 2014, , .		15
321	Real-Time Holographic Tracking and Control of Microrobots. IEEE Robotics and Automation Letters, 2017, 2, 143-148.	3.3	15
322	The magnetic self-aligning hermaphroditic connector a scalable approach for modular microrobots. , 2007, , .		14
323	Holonomic 5-DOF magnetic control of 1D nanostructures. , 2012, , .		14
324	Acousto-fluidic system assisting in-liquid self-assembly of microcomponents. Journal of Micromechanics and Microengineering, 2013, 23, 125026.	1.5	14

#	Article	IF	CITATIONS
325	A magnetic force sensor on a catheter tip for minimally invasive surgery. , 2015, 2015, 7970-3.		14
326	New materials for next-generation robots. Science Robotics, 2018, 3, .	9.9	14
327	Force microscopy of the Caenorhabditis elegans embryonic eggshell. Microsystems and Nanoengineering, 2020, 6, 29.	3.4	14
328	A Simulation Framework for Magnetic Continuum Robots. IEEE Robotics and Automation Letters, 2022, 7, 8370-8376.	3.3	14
329	Local control of electric current driven shell etching of multiwalled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2007, 89, 133-139.	1.1	13
330	Micro/Nanorobots. , 2008, , 411-450.		13
331	Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition. Nanotechnology, 2012, 23, 065604.	1.3	13
332	Electroforming of Magnetic Microtubes for Microrobotic Applications. IEEE Transactions on Magnetics, 2014, 50, 1-3.	1.2	13
333	Electrophoretic deposition as a new approach to produce optical sensing films adaptable to microdevices. Nanoscale, 2014, 6, 263-271.	2.8	13
334	Non-contact Manipulation for Automated Protein Crystal Harvesting using a Rolling Microrobot. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 7480-7485.	0.4	13
335	Magnetometry of Individual Polycrystalline Ferromagnetic Nanowires. Small, 2016, 12, 6363-6369.	5.2	13
336	Magnetostriction in electroplated CoFe alloys. Electrochemistry Communications, 2017, 76, 15-19.	2.3	13
337	Spatiotemporally controlled electrodeposition of magnetically driven micromachines based on the inverse opal architecture. Electrochemistry Communications, 2017, 81, 97-101.	2.3	13
338	An Intelligent In-Shoe System for Gait Monitoring and Analysis with Optimized Sampling and Real-Time Visualization Capabilities. Sensors, 2021, 21, 2869.	2.1	13
339	Measuring the Magnetic and Hydrodynamic Properties of Assembled-MEMS Microrobots. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	12
340	A Dynamic Region-of-Interest Vision Tracking System Applied to the Real-Time Wing Kinematic Analysis of Tethered <i>Drosophila</i> . IEEE Transactions on Automation Science and Engineering, 2010, 7, 463-473.	3.4	12
341	MRI magnetic signature imaging, tracking and navigation for targeted micro/nano-capsule therapeutics. , 2011, , .		12

Polymer-based Wireless Resonant Magnetic microrobots. , 2012, , .

#	Article	IF	CITATIONS
343	Laser thermal therapy for epilepsy surgery: current standing and future perspectives. International Journal of Hyperthermia, 2020, 37, 77-83.	1.1	12
344	Tiny robots make big advances. Science Robotics, 2021, 6, .	9.9	12
345	Bacteria-Inspired Magnetic Polymer Composite Microrobots. Lecture Notes in Computer Science, 2013, , 216-227.	1.0	12
346	Performance of microcontacts tested with a novel MEMS device. , 0, , .		11
347	A four degree of freedom MEMS microgripper with novel bi-directional thermal actuators. , 2005, , .		11
348	Micromanipulation using artificial bacterial flagella. , 2009, , .		11
349	A wireless acoustic emitter for passive localization in liquids. , 2009, , .		11
350	Ordered arrays of ferromagnetic, compositionally graded Cu1â^'xNix alloy nanopillars prepared by template-assisted electrodeposition. Journal of Materials Chemistry C, 2013, 1, 7215.	2.7	11
351	One-pot electrosynthesis of multi-layered magnetic metallopolymer nanocomposites. Nanoscale, 2014, 6, 4683.	2.8	11
352	Internal Electron Tunneling Enabled Ultrasensitive Position/Force Peapod Sensors. Nano Letters, 2015, 15, 7281-7287.	4.5	11
353	Magnetic microrobots with addressable shape control. , 2016, , .		11
354	Magnetically Assisted Robotic Fetal Surgery for the Treatment of Spina Bifida. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 85-93.	2.1	11
355	<title>Integrating force and vision feedback for microassembly</title> . , 1998, 3202, 30.		10
356	Design and fabrication of a gold electroplated electromagnetic and electrostatic hybrid MEMS relay. Journal of Applied Physics, 2005, 97, 10R506.	1.1	10
357	Maskless writing of a flexible nanoscale transistor with Au-contacted carbon nanotube electrodes. Applied Physics Letters, 2007, 91, .	1.5	10
358	Bacteria-Inspired Microrobots. , 2012, , 165-199.		10
359	Tracking a magnetically guided catheter with a single rotating C-Arm. , 2015, , .		10
360	Modeling Electromagnetic Navigation Systems for Medical Applications using Random Forests and Artificial Neural Networks. , 2020, , .		10

#	Article	IF	CITATIONS
361	Magnetically Active Cardiac Patches as an Untethered, Nonâ€Blood Contacting Ventricular Assist Device. Advanced Science, 2021, 8, 2000726.	5.6	10
362	Assistive Device for Efficient Intravitreal Injections. Ophthalmic Surgery Lasers and Imaging Retina, 2016, 47, 752-762.	0.4	10
363	Electrotransport and deformation model of ion exchange membrane-based actuators. , 2000, , .		9
364	Microrobotics for Molecular Biology: Manipulating Deformable Objects at the Microscale. Springer Tracts in Advanced Robotics, 2005, , 115-124.	0.3	9
365	Nanotube Boiler: Attogram Copper Evaporation Driven by Electric Current, Joule Heating, Charge, and Ionization. IEEE Nanotechnology Magazine, 2009, 8, 565-568.	1.1	9
366	MagMites - Microrobots for wireless microhandling in dry and wet environments. , 2010, , .		9
367	OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. , 2010, , .		9
368	High-performance electrodeposited Co-rich CoNiReP permanent magnets. Electrochimica Acta, 2011, 56, 8979-8988.	2.6	9
369	Lagrangian Modeling of the Magnetization and the Magnetic Torque on Assembled Soft-Magnetic MEMS Devices for Fast Computation and Analysis. IEEE Transactions on Robotics, 2012, 28, 787-797.	7.3	9
370	Optimization of receiver arrangements for passive emitter localization methods. Ultrasonics, 2012, 52, 447-455.	2.1	9
371	Mobility-Enhancing Coatings for Vitreoretinal Surgical Devices: Hydrophilic and Enzymatic Coatings Investigated by Microrheology. ACS Applied Materials & Interfaces, 2015, 7, 22018-22028.	4.0	9
372	Silicon-supported aluminum oxide membranes with ultrahigh aspect ratio nanopores. RSC Advances, 2015, 5, 94283-94289.	1.7	9
373	Real-Time Microforce Sensors and High Speed Vision System for Insect Flight Control Analysis. , 2008, , 451-460.		9
374	Small, Fast, and under Control: Wireless Resonant Magnetic Micro-agents. Springer Tracts in Advanced Robotics, 2009, , 169-178.	0.3	9
375	Kinematics Governing Mechanotransduction in the Sensory Hair of the Venus flytrap. International Journal of Molecular Sciences, 2021, 22, 280.	1.8	9
376	Functionalizing intraocular microrobots with surface coatings. , 2008, , .		8
377	Stability and analysis of configuration-tunable bi-directional MWNT bearings. Nanotechnology, 2009, 20, 495704.	1.3	8
378	Plumbing the Depths of the Nanometer Scale. IEEE Nanotechnology Magazine, 2010, 4, 13-22.	0.9	8

#	Article	IF	CITATIONS
379	Nanorobotic drug delivery. Materials Today, 2011, 14, 54.	8.3	8
380	Tailoring the physical properties of electrodeposited CoNiReP alloys with large Re content by direct, pulse, and reverse pulse current techniques. Electrochimica Acta, 2013, 96, 43-50.	2.6	8
381	An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments. Scientific Reports, 2016, 6, 27567.	1.6	8
382	Magnetic imaging of a single ferromagnetic nanowire using diamond atomic sensors. Nanotechnology, 2018, 29, 405502.	1.3	8
383	A Visually Servoed MEMS Manipulator. , 2003, , 255-264.		8
384	Hybrid Nanorobotic Approaches to NEMS. , 2007, , 163-174.		8
385	Vision resolvability for visually servoed manipulation. Journal of Field Robotics, 1996, 13, 75-93.	0.7	7
386	Virtual reality for microassembly. , 2007, , .		7
387	On imaging and localizing untethered intraocular devices with a stationary camera. , 2008, , .		7
388	Three-axis micro-force sensor with tunable force range and sub-micronewton measurement uncertainty. , 2010, , .		7
389	Fabricating devices with dielectrophoretically assembled, suspended single walled carbon nanotubes for improved nanoelectronic device characterization. Microelectronic Engineering, 2011, 88, 2740-2743.	1.1	7
390	Navigation of a rolling microrobot in cluttered environments for automated crystal harvesting. , 2015, , .		7
391	Visible Light Curing of Epon SU-8 Based Superparamagnetic Polymer Composites with Random and Ordered Particle Configurations. ACS Applied Materials & Interfaces, 2015, 7, 193-200.	4.0	7
392	The electrochemical manipulation of apolar solvent drops in aqueous electrolytes by altering the surface polarity of polypyrrole architectures. Electrochemistry Communications, 2015, 54, 32-35.	2.3	7
393	Magnetically actuated and guided milli-gripper for medical applications. , 2015, , .		7
394	Dual-axis Cellular Force Microscope for mechanical characterization of living plant cells. , 2016, , .		7
395	A Microrobotic System for Simultaneous Measurement of Turgor Pressure and Cell-Wall Elasticity of Individual Growing Plant Cells. IEEE Robotics and Automation Letters, 2019, 4, 641-646.	3.3	7
396	Magnetically and chemically propelled nanowire-based swimmers. , 2020, , 777-799.		7

#	Article	IF	CITATIONS
397	Wireless Intraocular Microrobots: Opportunities and Challenges. , 2011, , 271-311.		7
398	Magnetic concentric tube robots: Introduction and analysis. International Journal of Robotics Research, 2022, 41, 418-440.	5.8	7
399	Virtual environment for operations in the microworld. , 2000, , .		6
400	Open-structure reconfigurable experimental workstation for fast and reliable microassembly. , 2000, 4194, 21.		6
401	Modeling microassembly tasks with interactive forces. , 0, , .		6
402	Nanopositioning of a multi-axis microactuator using visual servoing. Journal of Micromechatronics, 2002, 2, 141-155.	1.9	6
403	High-throughput cell manipulation using ultrasound fields. , 2004, 2004, 2571-4.		6
404	Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. , 2007, , .		6
405	Aging effect of rolled-up InGaAs/GaAs/Cr helical nanobelts. Microelectronic Engineering, 2009, 86, 824-827.	1.1	6
406	Modeling and analysis of wireless resonant magnetic microactuators. , 2010, , .		6
407	Tailoring the drug loading capacity of polypyrrole films for use in intraocular biomicrorobots. , 2010, 2010, 4359-62.		6
408	An in-plane cobalt–nickel microresonator sensor with magnetic actuation and readout. Sensors and Actuators A: Physical, 2012, 188, 120-126.	2.0	6
409	SU-8-based nanoporous substrate for migration of neuronal cells. Microelectronic Engineering, 2015, 141, 173-177.	1.1	6
410	Miniaturized magnetic force sensor on a catheter tip. , 2015, , .		6
411	Micro-/Nanorobots. Springer Handbooks, 2016, , 671-716.	0.3	6
412	Probing the micromechanics of the fastest growing plant cell — The pollen tube. , 2016, 2016, 461-464.		6
413	Self-folding hydrogel bilayer for enhanced drug loading, encapsulation, and transport. , 2016, 2016, 2103-2106.		6
414	Nanomechanics on FGF-2 and Heparin Reveal Slip Bond Characteristics with pH Dependency. ACS Biomaterials Science and Engineering, 2017, 3, 1000-1007.	2.6	6

4

#	Article	IF	CITATIONS
415	A Robotic Diathermy System for Automated Capsulotomy. Journal of Medical Robotics Research, 2018, 03, 1850001.	1.0	6
416	Polymeric microellipsoids with programmed magnetic anisotropy for controlled rotation using low (â‰^10 mT) magnetic fields. Applied Materials Today, 2020, 18, 100511.	2.3	6
417	Constrained-Spherical Deconvolution Tractography in the Evaluation of the Corticospinal Tract in Glioma Surgery. Frontiers in Surgery, 2021, 8, 646465.	0.6	6
418	A Submillimeter Continuous Variable Stiffness Catheter for Compliance Control (Adv. Sci. 18/2021). Advanced Science, 2021, 8, 2170118.	5.6	6
419	Magnetoelectric reduction of chromium(VI) to chromium(III). Applied Materials Today, 2022, 26, 101339.	2.3	6
420	<title>Force-controlled microgripping</title> ., 1999,,.		5
421	Assimilating disparate sensory feedback within virtual environments for telerobotic systems. Robotics and Autonomous Systems, 2001, 36, 1-10.	3.0	5
422	Boundary element deformable object tracking with equilibrium constraints. , 2004, , .		5
423	Nano encoders based on vertical arrays of individual carbon nanotubes. Advanced Robotics, 2006, 20, 1281-1301.	1.1	5
424	A multi-axis MEMS force-torque sensor for measuring the load on a microrobot actuated by magnetic fields. , 2007, , .		5
425	Tracking intraocular microdevices based on colorspace evaluation and statistical color/shape information. , 2009, , .		5
426	The cellular force microscope (CFM): A microrobotic system for quantitating the growth mechanics of living, growing plant cells in situ. , 2011, , .		5
427	Mineralizationâ€Inspired Synthesis of Magnetic Zeolitic Imidazole Framework Composites. Angewandte Chemie, 2019, 131, 13684-13689.	1.6	5
428	<title>Visual servoing frameworks for microassembly of hybrid MEMS</title> . , 1998, , .		4
429	<title>MEMS-based single-cell penetration force sensor</title> . , 1999, , .		4
430	Force and vision feedback for robotic manipulation of the microworld. , 2000, , 433-442.		4
431	Drosophila flight force measurements using a MEMS micro force sensor. , 2004, 2004, 2014-7.		4

432 In-situ nanorobotic soldering of three-dimensional helical nanobelts using gold nanoink. , 2007, , .

#	Article	IF	CITATIONS
433	Electrochemical surface reshaping of polycrystalline platinum: Morphology and crystallography. Electrochimica Acta, 2008, 53, 4051-4058.	2.6	4
434	Motion control of artificial bacterial flagella. , 2010, , .		4
435	Model-based localization of intraocular microrobots for wireless electromagnetic control. , 2011, , .		4
436	Automated stiffness characterization of living tobacco BY2 cells using the Cellular Force Microscope. , 2012, , .		4
437	Backside Liquid Phase Photolithography for Fabricating Self-Organizing Hydrogel Bilayers. Procedia Engineering, 2012, 47, 1219-1222.	1.2	4
438	Parallel C4 Packaging of MEMS Using Self-Alignment: Simulation and Experiments. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3, 1420-1429.	1.4	4
439	Functional polypyrrole coatings for wirelessly controlled magnetic microrobots. , 2013, , .		4
440	Three-dimensional, automated magnetic biomanipulation with subcellular resolution. , 2013, , .		4
441	Generating Magnetic Fields for Controlling Nanorobots in Medical Applications. , 2013, , 275-299.		4
442	Cobalt–nickel microcantilevers for biosensing. Journal of Intelligent Material Systems and Structures, 2013, 24, 2215-2220.	1.4	4
443	Microrobotics: Electroforming of Implantable Tubular Magnetic Microrobots for Wireless Ophthalmologic Applications (Adv. Healthcare Mater. 2/2015). Advanced Healthcare Materials, 2015, 4, 208-208.	3.9	4
444	Gene Therapy: Magnetic Helical Microswimmers Functionalized with Lipoplexes for Targeted Gene Delivery (Adv. Funct. Mater. 11/2015). Advanced Functional Materials, 2015, 25, 1764-1764.	7.8	4
445	Perforation forces of the intact porcine anterior lens capsule. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 347-354.	1.5	4
446	Quantification of Mechanical Forces and Physiological Processes Involved in Pollen Tube Growth Using Microfluidics and Microrobotics. Methods in Molecular Biology, 2020, 2160, 275-292.	0.4	4
447	Fabrication and Characterization of Self-scrolling Si/Cr Micro- and Nanostructures. , 2006, , .		3
448	Dual-chirality helical nanobelts: A novel linear-to-rotary motion converter. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	3
449	Characterization and actuation of a magnetic photosensitive polymer cantilever. , 2009, , .		3
450	Superparamagnetic photosensitive polymer nanocomposite for microactuators. , 2009, , .		3

#	Article	IF	CITATIONS
451	Oxygen sensing using microrobots. , 2010, 2010, 1958-61.		3
452	Robust ℋ <inf>∞</inf> control for electromagnetic steering of microrobots. , 2012, , .		3
453	Localized viscoelasticity measurements with untethered intravitreal microrobots. , 2012, 2012, 2813-6.		3
454	Non-contact, 3D magnetic biomanipulation for in vivo and in vitro applications. , 2012, , .		3
455	Lithography: Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition (Small 7/2014). Small, 2014, 10, 1234-1234.	5.2	3
456	Targeted Delivery: An Integrated Microrobotic Platform for On-Demand, Targeted Therapeutic Interventions (Adv. Mater. 6/2014). Advanced Materials, 2014, 26, 951-951.	11.1	3
457	The biocompatibility and anti-biofouling properties of magnetic core–multishell Fe@C NWs–AAO nanocomposites. Physical Chemistry Chemical Physics, 2015, 17, 13274-13279.	1.3	3
458	Hydrogels: Nearâ€Infrared Lightâ€Sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cellâ€Instructive 3D Microenvironments (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870070.	11.1	3
459	Modelling the Impact of Robotics on Infectious Spread Among Healthcare Workers. Frontiers in Robotics and Al, 2021, 8, 652685.	2.0	3
460	Mechanical factors contributing to the Venus flytrap's rate-dependent response to stimuli. Biomechanics and Modeling in Mechanobiology, 2021, 20, 2287-2297.	1.4	3
461	Microforce-Sensing Tools and Methodologies for Micromechanical Metrology. , 2011, , 93-131.		3
462	Magnetically Guided Catheters, Micro- and Nanorobots for Spinal Cord Stimulation. Frontiers in Neurorobotics, 2021, 15, 749024.	1.6	3
463	Dielectrophoretic nanoassembly of individual carbon nanotubes onto nanoelectrodes. , 0, , .		2
464	Conductometric sensors based on InGaAs/GaAs nanocoils. , 2007, , .		2
465	Automatic Nanorobotic Characterization of Anomalously Rolled-up SiGe/Si Helical Nanobelts through Vision-based Force Measurement. , 2007, , .		2
466	A Magnetically Controlled Wireless Intraocular Oxygen Sensor: Concept, Prototype, and In Vitro Experiments. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4189-93.	0.5	2
467	Real-time rigid-body visual tracking in a scanning electron microscope. , 2007, , .		2

468 Two-axis micro-tensile tester chip for measuring plant cell mechanics. , 2010, , .

2

#	Article	IF	CITATIONS
469	Sensorless Closed-Loop and Selective Heating for SiP MEMS Flip Chip. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3, 342-349.	1.4	2
470	Pushing the limits of photo-curable SU-8-based superparamagnetic polymer composites. , 2013, , .		2
471	Viscoelastic interaction between intraocular microrobots and vitreous humor: A finite element approach. , 2013, 2013, 4937-40.		2
472	Non-contact manipulation for automated protein crystal harvesting using a rolling microrobot. , 2014, , .		2
473	Dumbbell fluidic tweezers: Enhanced trapping and manipulation of microscale objects using mobile microvortices. , 2014, , .		2
474	Magnetoelectrics: Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery (Adv. Mater.) Tj ETQq0 0 0	rg ₿T. ‡Ove	erlo e k 10 Tf 50
475	Fabrication and Locomotion of Flexible Nanoswimmers. , 2018, , .		2
476	Bioinspired navigation in shape morphing micromachines for autonomous targeted drug delivery. , 2018, , .		2
477	Magnetoelectric Catalysis: Magnetoelectrically Driven Catalytic Degradation of Organics (Adv.) Tj ETQq1 1 0.784	1314 rgB1 11.19	「/Oyerlock 10
478	Microrobotics: 3D Fabrication of Fully Iron Magnetic Microrobots (Small 16/2019). Small, 2019, 15, 1970086.	5.2	2
479	Simultaneous measurement of turgor pressure and cell wall elasticity in growing pollen tubes. Methods in Cell Biology, 2020, 160, 297-310.	0.5	2
480	Nanorobotics. , 2010, , 1633-1659.		2
481	Parallel Packaging of Micro Electro Mechanical Systems (MEMS) Using Self-alignment. International Federation for Information Processing, 2012, , 28-35.	0.4	2
482	<title>Design for visually guided microassembly</title> . , 1999, , .		1
483	<title>System of launchable mesoscale robots for distributed sensing</title> . , 1999, 3834, 85.		1
484	Vision-based force sensing at nanonewton scales. , 2001, , .		1
485	Ethical Implications of Biases and Errors in Geographic Information Systems. , 2006, , .		1
486	In Situ Characterization of Individual Carbon Nanotube Field Emitters with Single Crystalline Cu Tips.		1

, 2006, , .

#	Article	IF	CITATIONS
487	Optical Tracking of Multi-walled Carbon Nanotubes by Attaching Functionalized Quantum Dots. , 2006, , .		1
488	Batch fabrication of nanotube transducers. , 2007, , .		1
489	InGaAs/GaAs helical nanobelts as building blocks for nanoscale optoelectronic devices. , 2007, , .		1
490	Nanorobotic Spot Welding by Attogram Precision Metal Deposition from Copper-filled Carbon Nanotubes. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	1
491	Nanohelices as motion converters. , 2008, , .		1
492	The Cyborg Fly: A biorobotic platform to investigate dynamic coupling effects between a fruit fly and a robot. , 2008, , .		1
493	Morphology detection for magnetically self-assembled modular robots. , 2009, , .		1
494	Wide-angle localization of intraocular devices from focus. , 2009, , .		1
495	A microfabricated and microassembled wireless resonator. Sensors and Actuators A: Physical, 2009, 154, 109-116.	2.0	1
496	Design of automated digital eye palpation exam for intraocular pressure measurement. , 2009, , .		1
497	Rotary nanomotors based on head-to-head nanotube shuttles. , 2010, , .		1
498	Strategies for drug-delivery and chemical sensing using biomédical microrobots. , 2010, , .		1
499	Time delay estimation for control of microrobots under uncertainties. , 2013, , .		1
500	Artificial bacterial flagella functionalized with temperature-sensitive liposomes for biomedical applications. , 2013, , .		1
501	Motion control for magnetic micro-scale manipulation. , 2013, , .		1
502	Wireless Actuation of Micro/Nanorobots for Medical Applications. Nanostructure Science and Technology, 2014, , 171-189.	0.1	1
503	High-throughput analysis of the morphology and mechanics of tip growing cells using a microrobotic platform. , 2014, , .		1
504	Nanorobotics for NEMS Using Helical Nanostructures. , 2016, , 2659-2666.		1

#	Article	IF	CITATIONS
505	Magnetic Actuation: Voltageâ€Induced Coercivity Reduction in Nanoporous Alloy Films: A Boost toward Energyâ€Efficient Magnetic Actuation (Adv. Funct. Mater. 32/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
506	Microswimmers: Artificial Acoustoâ€Magnetic Soft Microswimmers (Adv. Mater. Technol. 7/2017). Advanced Materials Technologies, 2017, 2, .	3.0	1
507	Microrobots for Active Object Manipulation. Microsystems and Nanosystems, 2017, , 61-72.	0.1	1
508	Stereo Holographic Diffraction Based Tracking of Microrobots. IEEE Robotics and Automation Letters, 2018, 3, 567-572.	3.3	1
509	Wide-Angle Intraocular Imaging and Localization. Lecture Notes in Computer Science, 2009, 12, 540-548.	1.0	1
510	Measuring Cytomechanical Forces on Growing Pollen Tubes. , 2017, , 65-85.		1
511	Growth and Labelling of Cell Wall Components of the Brown Alga Ectocarpus in Microfluidic Chips. Frontiers in Marine Science, 2021, 8, .	1.2	1
512	Task oriented model-driven visually servoed agents. , 1997, , 121-129.		0
513	Title is missing!. Autonomous Robots, 1999, 7, 159-173.	3.2	Ο
514	Pull-In Extension of MEMS Electrostatic Microactuators Using an Active Control Method. , 2005, , 273.		0
515	Site Controlled Nanotube Shell Etching for Interlayer Motion Based NEMS. , 2007, , .		0
516	Mechanical instabilities and piezoresistivity of SiGe/Si microtubes. , 2007, , .		0
517	Reverse-engineering lift control in fruit flies. , 2008, , .		Ο
518	NEMS-on-a-tip: Force sensors based on electromechanical coupling of individual multi-walled carbon nanotubes. , 2008, , .		0
519	Metal-filled carbon nanotubes for nanomechatronics. , 2008, , .		Ο
520	Shaping electrodes for ultrahigh precision dielectrophoretic manipulation of carbon nanotubes. , 2008, , .		0
521	Solution-phase surface reconstruction and structural transformation in MWNTs. , 2009, , .		Ο
522	Metal-filled carbon nanotubes for nanofluidic systems: Modes of melting and evaporation. , 2009, , .		0

Metal-filled carbon nanotubes for nanofluidic systems: Modes of melting and evaporation. , 2009, , . 522

#	Article	IF	CITATIONS
523	Rolled-up helical nanobelts: from fabrication to swimming microrobots. Materials Research Society Symposia Proceedings, 2010, 1272, 1.	0.1	0
524	Wafer-level inspection system for the automated testing of comb drive based MEMS sensors and actuators. , 2010, , .		0
525	Noncontact and contact micromanipulation using a rotating nickel nanowire. , 2010, , .		0
526	An in-plane cobalt-nickel microresonator sensor with magnetic actuation and readout. , 2011, , .		0
527	Fabrication of protruding nanoelectrode pairs for electromechanical characterization of individual multiwalled carbon nanotubes. Microelectronic Engineering, 2011, 88, 2397-2400.	1.1	0
528	Nickel nanowire swimmers for colloidal cargo transport near a solid surface. , 2011, , .		0
529	Micrororobotics. , 2012, , 1436-1436.		0
530	Fabric of magnetically actuated microstructure for targeted cell transportation. , 2013, , .		0
531	Nanorobotic Mass Transport. , 2013, , 137-153.		0
532	Iron Nanowires: Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation (Adv. Funct. Mater. 7/2013). Advanced Functional Materials, 2013, 23, 782-782.	7.8	0
533	Scaffold-type microrobots for targeted cell delivery. , 2015, , .		Ο
534	Fabrication and targeted particle delivery using microrobots. , 2015, , .		0
535	Nanorobotic Spot Welding. , 2016, , 2632-2640.		0
536	In vivo tracking and measurement of pollen tube vesicle motion. , 2017, , .		0
537	Nanorobotics. Springer Handbooks, 2017, , 559-584.	0.3	0
538	Labâ€onâ€a hip and Arrays: 3D Manipulation and Imaging of Plant Cells using Acoustically Activated Microbubbles (Small Methods 3/2019). Small Methods, 2019, 3, 1970006.	4.6	0
539	Micro-/Nanorobots. , 2021, , 1-11.		0
540	Photochromic 3D Microâ€Objects: Nanoâ€3Dâ€Printed Photochromic Microâ€Objects (Small 26/2021). Small, 2021, 17, 2170132.	5.2	0

#	Article	IF	CITATIONS
541	Fabrication and Characterization of NEMS-Based Single Nanotube Emitter Arrays. , 2005, , .		0
542	Nanorobotics. , 2007, , 1545-1574.		0
543	Wireless Electrical Power to Sub-millimeter Robots. Lecture Notes in Computer Science, 2012, , 301-312.	1.0	0
544	Dielectrophoretic Nanoassembly of Nanotubes onto Nanoelectrodes. , 2016, , 774-780.		0
545	Magnetic-Field-Based Self-Assembly. , 2016, , 1868-1879.		0
546	Magnetic field interpolation for remote magnetic navigation in minimally invasive surgery. , 2022, , 397-424.		0
547	Integrated Pedal System for Data Driven Rehabilitation. Sensors, 2021, 21, 8115.	2.1	0
548	The Cellular Force Microscope (CFM): A microrobotic system for quantitating the growth mechanics of living, growing plant cells in situ. , 2011, , .		0
549	Moving right arm in the right place: Ophiuroid-inspired omnidirectional robot driven by coupled dynamical systems. , 2011, , .		0
550	A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. , 2020, 18, e3000740.		0
551	A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. , 2020, 18, e3000740.		0
552	A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. , 2020, 18, e3000740.		0
553	A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. , 2020, 18, e3000740.		0
554	A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. , 2020, 18, e3000740.		0
555	A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. , 2020, 18, e3000740.		0
556	A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. , 2020, 18, e3000740.		0
557	A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. , 2020, 18, e3000740.		0