Leida Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/1949976/leida-li-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

260
papers
7,487
citations
44
h-index
79
g-index

302
ext. papers
ext. citations
4.6
avg, IF
L-index

#	Paper	IF	Citations
260	Perceptual visual quality metrics: A survey. <i>Journal of Visual Communication and Image Representation</i> , 2011 , 22, 297-312	2.7	615
259	Image quality assessment based on gradient similarity. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 1500-12	8.7	433
258	No-reference image sharpness assessment in autoregressive parameter space. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3218-31	8.7	193
257	. IEEE Transactions on Multimedia, 2016 , 18, 1098-1110	6.6	189
256	Perceptual quality metric with internal generative mechanism. <i>IEEE Transactions on Image Processing</i> , 2013 , 22, 43-54	8.7	187
255	No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 4559-4565	10.2	184
254	A psychovisual quality metric in free-energy principle. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 41-52	8.7	173
253	No-Reference Image Blur Assessment Based on Discrete Orthogonal Moments. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 39-50	10.2	172
252	A Fast Reliable Image Quality Predictor by Fusing Micro- and Macro-Structures. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 3903-3912	8.9	167
251	A Patch-Structure Representation Method for Quality Assessment of Contrast Changed Images. <i>IEEE Signal Processing Letters</i> , 2015 , 22, 2387-2390	3.2	164
250	Review of Visual Saliency Detection With Comprehensive Information. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2019 , 29, 2941-2959	6.4	159
249	No-Reference Quality Assessment of Screen Content Pictures. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 4005-4018	8.7	151
248	Just Noticeable Difference for Images With Decomposition Model for Separating Edge and Textured Regions. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2010 , 20, 1648-1652	6.4	146
247	Perceptual Quality Assessment of Screen Content Images. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 4408-21	8.7	136
246	No-Reference Quality Assessment for Multiply-Distorted Images in Gradient Domain. <i>IEEE Signal Processing Letters</i> , 2016 , 23, 541-545	3.2	127
245	. IEEE Transactions on Multimedia, 2013 , 15, 1700-1705	6.6	119
244	Analysis of Distortion Distribution for Pooling in Image Quality Prediction. <i>IEEE Transactions on Broadcasting</i> , 2016 , 62, 446-456	4.7	116

(2018-2017)

243	Unified Blind Quality Assessment of Compressed Natural, Graphic, and Screen Content Images. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 5462-5474	8.7	116
242	. IEEE Transactions on Multimedia, 2016 , 18, 2457-2469	6.6	98
241	Image Retargeting Quality Assessment: A Study of Subjective Scores and Objective Metrics. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2012 , 6, 626-639	7.5	96
240	. IEEE Transactions on Multimedia, 2016 , 18, 1085-1097	6.6	83
239	Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description. <i>IEEE Transactions on Image Processing</i> , 2018 , 27, 394-405	8.7	81
238	. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014 , 4, 95-105	5.2	81
237	. IEEE Transactions on Multimedia, 2017 , 19, 1030-1040	6.6	80
236	Learning a blind quality evaluation engine of screen content images. <i>Neurocomputing</i> , 2016 , 196, 140-1	49 .4	78
235	No Reference Quality Assessment for Screen Content Images With Both Local and Global Feature Representation. <i>IEEE Transactions on Image Processing</i> , 2018 , 27, 1600-1610	8.7	73
234	Blurred Image Splicing Localization by Exposing Blur Type Inconsistency. <i>IEEE Transactions on Information Forensics and Security</i> , 2015 , 10, 999-1009	8	71
233	Objective Quality Assessment for Image Retargeting Based on Perceptual Geometric Distortion and Information Loss. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2014 , 8, 377-389	7.5	71
232	No-reference quality assessment of deblocked images. <i>Neurocomputing</i> , 2016 , 177, 572-584	5.4	69
231	Referenceless Measure of Blocking Artifacts by Tchebichef Kernel Analysis. <i>IEEE Signal Processing Letters</i> , 2014 , 21, 122-125	3.2	68
230	Visual Saliency Detection With Free Energy Theory. <i>IEEE Signal Processing Letters</i> , 2015 , 22, 1552-1555	3.2	65
229	Evaluating Quality of Screen Content Images Via Structural Variation Analysis. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2018 , 24, 2689-2701	4	65
228	Reduced-Reference Quality Assessment of Screen Content Images. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2018 , 28, 1-14	6.4	64
227	Orientation selectivity based visual pattern for reduced-reference image quality assessment. <i>Information Sciences</i> , 2016 , 351, 18-29	7.7	61
226	. IEEE Transactions on Multimedia, 2018 , 20, 914-926	6.6	59

225	Toward a Blind Deep Quality Evaluator for Stereoscopic Images Based on Monocular and Binocular Interactions. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 2059-74	8.7	59
224	Subjective and Objective Quality Assessment of Compressed Screen Content Images. <i>IEEE Journal on Emerging and Selected Topics in Circuits and Systems</i> , 2016 , 6, 532-543	5.2	56
223	Visual Orientation Selectivity Based Structure Description. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 4602-13	8.7	52
222	Recurrent Air Quality Predictor Based on Meteorology- and Pollution-Related Factors. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 3946-3955	11.9	52
221	Just Noticeable Difference Estimation for Screen Content Images. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 3838-51	8.7	52
220	Three Dimensional Scalable Video Adaptation via User-End Perceptual Quality Assessment. <i>IEEE Transactions on Broadcasting</i> , 2008 , 54, 719-727	4.7	50
219	Explore and Model Better I-Frames for Video Coding. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2011 , 21, 1242-1254	6.4	47
218	Backward Registration-Based Aspect Ratio Similarity for Image Retargeting Quality Assessment. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 4286-4297	8.7	47
217	MetalQA: Deep Meta-Learning for No-Reference Image Quality Assessment 2020,		45
216	Detecting image seam carving with low scaling ratio using multi-scale spatial and spectral entropies. <i>Journal of Visual Communication and Image Representation</i> , 2017 , 48, 281-291	2.7	43
215	Scene-Based Movie Summarization Via Role-Community Networks. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2013 , 23, 1927-1940	6.4	42
214	Detecting seam carving based image resizing using local binary patterns. <i>Computers and Security</i> , 2015 , 55, 130-141	4.9	38
213	Learning Structural Regularity for Evaluating Blocking Artifacts in JPEG Images. <i>IEEE Signal Processing Letters</i> , 2014 , 21, 918-922	3.2	37
212	Image Quality Assessment with Degradation on Spatial Structure. <i>IEEE Signal Processing Letters</i> , 2014 , 21, 437-440	3.2	37
211	An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides enable robust and rapid COVID-19 testing. <i>Nature Communications</i> , 2021 , 12, 1739	17.4	37
210	A Prediction Backed Model for Quality Assessment of Screen Content and 3-D Synthesized Images. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 652-660	11.9	35
209	Blind Image Quality Assessment for Stereoscopic Images Using Binocular Guided Quality Lookup and Visual Codebook. <i>IEEE Transactions on Broadcasting</i> , 2015 , 61, 154-165	4.7	34
208	End-to-End Blind Image Quality Prediction With Cascaded Deep Neural Network. <i>IEEE Transactions</i> on Image Processing, 2020 , 29, 7414-7426	8.7	34

207	. IEEE Transactions on Circuits and Systems for Video Technology, 2019 , 29, 323-335	6.4	33	
206	No-Reference Quality Assessment of Deblurred Images Based on Natural Scene Statistics. <i>IEEE Access</i> , 2017 , 5, 2163-2171	3.5	32	
205	Screen image quality assessment incorporating structural degradation measurement 2015,		32	
204	Blind image quality assessment with improved natural scene statistics model 2016 , 57, 56-65		32	
203	No-Reference Quality Assessment for View Synthesis Using DoG-based Edge Statistics and Texture Naturalness. <i>IEEE Transactions on Image Processing</i> , 2019 ,	8.7	30	
202	Visual quality assessment: recent developments, coding applications and future trends. <i>APSIPA Transactions on Signal and Information Processing</i> , 2013 , 2,	4.4	30	
201	Sparse Representation-Based Image Quality Index With Adaptive Sub-Dictionaries. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 3775-86	8.7	29	
200	Automated anterior segment OCT image analysis for Angle Closure Glaucoma mechanisms classification. <i>Computer Methods and Programs in Biomedicine</i> , 2016 , 130, 65-75	6.9	29	
199	A robust forgery detection algorithm for object removal by exemplar-based image inpainting. <i>Multimedia Tools and Applications</i> , 2018 , 77, 11823-11842	2.5	28	
198	No-Reference Quality Assessment of Contrast-Distorted Images Based on Natural Scene Statistics. <i>IEEE Signal Processing Letters</i> , 2014 , 1-1	3.2	28	
197	Bayesian Error Concealment With DCT Pyramid for Images. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2010 , 20, 1224-1232	6.4	28	
196	Image quality assessment based on multi-scale representation of structure 2014 , 33, 125-133		26	
195	A multi-metric fusion approach to visual quality assessment 2011 ,		26	
194	Models of Monocular and Binocular Visual Perception in Quality Assessment of Stereoscopic Images. <i>IEEE Transactions on Computational Imaging</i> , 2016 , 2, 123-135	4.5	25	
193	. IEEE Transactions on Multimedia, 2019 , 21, 1221-1234	6.6	25	
192	On Predicting Visual Comfort of Stereoscopic Images: A Learning to Rank Based Approach. <i>IEEE Signal Processing Letters</i> , 2016 , 23, 302-306	3.2	24	
191	Geometric Optimum Experimental Design for Collaborative Image Retrieval. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2014 , 24, 346-359	6.4	24	
190	A Highly Efficient Blind Image Quality Assessment Metric of 3-D Synthesized Images Using Outlier Detection. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 4120-4128	11.9	24	

189	Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis. Journal of Medical Systems, 2016 , 40, 78	5.1	23
188	. IEEE Transactions on Multimedia, 2019 , 21, 2738-2749	6.6	23
187	Video coding using the most common frame in scene 2010 ,		23
186	. IEEE Transactions on Broadcasting, 2020 , 66, 127-139	4.7	23
185	. IEEE Transactions on Multimedia, 2018 , 20, 3019-3032	6.6	22
184	Depth Map Coding for View Synthesis Based on Distortion Analyses. <i>IEEE Journal on Emerging and Selected Topics in Circuits and Systems</i> , 2014 , 4, 106-117	5.2	22
183	RIRNet 2020 ,		22
182	Blind Quality Metric of DIBR-Synthesized Images in the Discrete Wavelet Transform Domain. <i>IEEE Transactions on Image Processing</i> , 2019 ,	8.7	22
181	Subjective quality assessment of Screen Content Images 2014 ,		21
180	A shallow convolutional neural network for blind image sharpness assessment. <i>PLoS ONE</i> , 2017 , 12, e0 ⁻⁷	1 <i>7</i> 36 5 632	2 21
180	A shallow convolutional neural network for blind image sharpness assessment. <i>PLoS ONE</i> , 2017 , 12, e07 Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural network. <i>International Journal of Imaging Systems and Technology</i> , 2017 , 27, 57-65	1 <i>7</i> 36632 2.5	2 21
	Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural		
179	Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural network. <i>International Journal of Imaging Systems and Technology</i> , 2017 , 27, 57-65 GridSAR: Grid strength and regularity for robust evaluation of blocking artifacts in JPEG images.	2.5	20
179 178	Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural network. <i>International Journal of Imaging Systems and Technology</i> , 2017 , 27, 57-65 GridSAR: Grid strength and regularity for robust evaluation of blocking artifacts in JPEG images. <i>Journal of Visual Communication and Image Representation</i> , 2015 , 30, 153-163 Personality-assisted Multi-task Learning for Generic and Personalized Image Aesthetics	2.5	20
179 178 177	Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural network. <i>International Journal of Imaging Systems and Technology</i> , 2017 , 27, 57-65 GridSAR: Grid strength and regularity for robust evaluation of blocking artifacts in JPEG images. <i>Journal of Visual Communication and Image Representation</i> , 2015 , 30, 153-163 Personality-assisted Multi-task Learning for Generic and Personalized Image Aesthetics Assessment. <i>IEEE Transactions on Image Processing</i> , 2020 , Fractional quaternion cosine transform and its application in color image copy-move forgery	2.5 2.7 8.7	20 20 20
179 178 177 176	Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural network. International Journal of Imaging Systems and Technology, 2017, 27, 57-65 GridSAR: Grid strength and regularity for robust evaluation of blocking artifacts in JPEG images. Journal of Visual Communication and Image Representation, 2015, 30, 153-163 Personality-assisted Multi-task Learning for Generic and Personalized Image Aesthetics Assessment. IEEE Transactions on Image Processing, 2020, Fractional quaternion cosine transform and its application in color image copy-move forgery detection. Multimedia Tools and Applications, 2019, 78, 8057-8073 Multiple-parameter fractional quaternion Fourier transform and its application in colour image	2.5 2.7 8.7 2.5	20 20 20 20
179 178 177 176	Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural network. International Journal of Imaging Systems and Technology, 2017, 27, 57-65 GridSAR: Grid strength and regularity for robust evaluation of blocking artifacts in JPEG images. Journal of Visual Communication and Image Representation, 2015, 30, 153-163 Personality-assisted Multi-task Learning for Generic and Personalized Image Aesthetics Assessment. IEEE Transactions on Image Processing, 2020, Fractional quaternion cosine transform and its application in color image copy-move forgery detection. Multimedia Tools and Applications, 2019, 78, 8057-8073 Multiple-parameter fractional quaternion Fourier transform and its application in colour image encryption. IET Image Processing, 2018, 12, 2238-2249 A visual attention model combining top-down and bottom-up mechanisms for salient object	2.5 2.7 8.7 2.5	20 20 20 20 20

(2016-2015)

171	B-SHOT: A binary feature descriptor for fast and efficient keypoint matching on 3D point clouds 2015 ,		18	
170	. IEEE Transactions on Multimedia, 2018 , 20, 659-674	6.6	17	
169	Perceptual screen content image quality assessment and compression 2015,		17	
168	Robust image compression based on compressive sensing 2010 ,		17	
167	Detecting video frame rate up-conversion based on frame-level analysis of average texture variation. <i>Multimedia Tools and Applications</i> , 2017 , 76, 8399-8421	2.5	16	
166	Performance Evaluation of Visual Tracking Algorithms on Video Sequences With Quality Degradation. <i>IEEE Access</i> , 2017 , 5, 2430-2441	3.5	16	
165	B-SHOT: a binary 3D feature descriptor for fast Keypoint matching on 3D point clouds. <i>Autonomous Robots</i> , 2017 , 41, 1501-1520	3	16	
164	. IEEE Transactions on Multimedia, 2019 , 21, 2042-2056	6.6	16	
163	. IEEE Access, 2018 , 6, 11534-11543	3.5	16	
162	Blind Image Blur Identification in Cepstrum Domain 2007,		16	
161	Color image quality assessment based on sparse representation and reconstruction residual. Journal of Visual Communication and Image Representation, 2016, 38, 550-560	2.7	16	
160	An efficient and effective blind camera image quality metric via modeling quaternion wavelet coefficients. <i>Journal of Visual Communication and Image Representation</i> , 2017 , 49, 204-212	2.7	15	
159	Video saliency incorporating spatiotemporal cues and uncertainty weighting 2013,		15	
158	Perceptual Quality Assessment for Screen Content Images by Spatial Continuity. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2020 , 30, 4050-4063	6.4	15	
157	Blind quality index for tone-mapped images based on luminance partition. <i>Pattern Recognition</i> , 2019 , 89, 108-118	7.7	15	
156	3DHoPD: A Fast Low-Dimensional 3-D Descriptor. <i>IEEE Robotics and Automation Letters</i> , 2017 , 2, 1472-	14 7.9	14	
155	Detection of image seam carving by using weber local descriptor and local binary patterns. <i>Journal of Information Security and Applications</i> , 2017 , 36, 135-144	3.5	14	
154	Blind quality index for camera images with natural scene statistics and patch-based sharpness assessment. <i>Journal of Visual Communication and Image Representation</i> , 2016 , 40, 335-344	2.7	14	

153	Blind image quality assessment with hierarchy: Degradation from local structure to deep semantics. Journal of Visual Communication and Image Representation, 2019, 58, 353-362	2.7	14
152	Statistical and Structural Information Backed Full-Reference Quality Measure of Compressed Sonar Images. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2020 , 30, 334-348	6.4	14
151	A consistency evaluation of signal-to-noise ratio in the quality assessment of human brain magnetic resonance images. <i>BMC Medical Imaging</i> , 2018 , 18, 17	2.9	12
150	An inter-image redundancy measure for image set compression 2015 ,		12
149	Study of subjective and objective quality assessment of retargeted images 2012,		12
148	Learning a Unified Blind Image Quality Metric via On-Line and Off-Line Big Training Instances. <i>IEEE Transactions on Big Data</i> , 2020 , 6, 780-791	3.2	12
147	DECA: Recovering fields of physical quantities from incomplete sensory data 2012,		11
146	Enhanced just noticeable difference model with visual regularity consideration 2016,		11
145	Visual-Attention-Based Pixel Dimming Technique for OLED Displays of Mobile Devices. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 7159-7167	8.9	11
144	Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	11
143	No-reference quality assessment of DIBR-synthesized videos by measuring temporal flickering. Journal of Visual Communication and Image Representation, 2018 , 55, 30-39	2.7	11
142	Stereoscopic image retargeting based on 3D saliency detection 2014 ,		10
141	Scalable image quality assessment based on structural vectors 2009 ,		10
140	Quality assessment of 3D synthesized images via disoccluded region discovery 2016 ,		10
139	Blind Image Quality Assessment With Active Inference. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 3650-3663	8.7	10
138	Context-aware Deep Learning for Multi-modal Depression Detection 2019,		9
137	Training-free referenceless camera image blur assessment via hypercomplex singular value decomposition. <i>Multimedia Tools and Applications</i> , 2018 , 77, 5637-5658	2.5	9
136	Robust Localization of Interpolated Frames by Motion-Compensated Frame Interpolation Based on an Artifact Indicated Map and Tchebichef Moments. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2019 , 29, 1893-1906	6.4	9

135	Learning based screen image compression 2012 ,		9	
134	LGPS: Phase Based Image Quality Assessment Metric. Signal Processing Systems Design and Implementation (siPS), IEEE Workshop on, 2007,		9	
133	Survey of visual just noticeable difference estimation. Frontiers of Computer Science, 2019, 13, 4-15	2.2	9	
132	Accurate and Lightweight Image Super-Resolution With Model-Guided Deep Unfolding Network. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2021 , 15, 240-252	7.5	9	
131	Subjective and objective quality assessment for image restoration: A critical survey. <i>Signal Processing: Image Communication</i> , 2020 , 85, 115839	2.8	8	
130	Low-Complexity Depth Coding by Depth Sensitivity Aware Rate-Distortion Optimization. <i>IEEE Transactions on Broadcasting</i> , 2016 , 62, 94-102	4.7	8	
129	Perceptual evaluation of single-image super-resolution reconstruction 2017,		8	
128	Saliency detection for stereoscopic images 2013,		8	
127	Generalizable No-Reference Image Quality Assessment via Deep Meta-learning. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	8	
126	Attended Visual Content Degradation Based Reduced Reference Image Quality Assessment. <i>IEEE Access</i> , 2018 , 6, 12493-12504	3.5	7	
125	No-reference quality assessment of enhanced images. <i>China Communications</i> , 2016 , 13, 121-130	3	7	
124	A general histogram modification framework for efficient contrast enhancement 2015,		7	
123	Reduced-reference image quality assessment with local binary structural pattern 2014,		7	
122	Fast and efficient blind image quality index in spatial domain. <i>Electronics Letters</i> , 2013 , 49, 1137-1138	1.1	7	
121	Incremental Few-Shot Learning for Pedestrian Attribute Recognition 2019,		7	
120	No-reference image quality assessment based on high order derivatives 2016 ,		7	
119	Content-Insensitive Blind Image Blurriness Assessment Using Weibull Statistics and Sparse Extreme Learning Machine. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2019 , 49, 516-527	7.3	7	
118	Quality assessment for view synthesis using low-level and mid-level structural representation. <i>Signal Processing: Image Communication</i> , 2019 , 74, 309-321	2.8	6	

117	Naturalization of Screen Content Images for Enhanced Quality Evaluation. <i>IEICE Transactions on Information and Systems</i> , 2017 , E100.D, 574-577	0.6	6
116	Aspect Ratio Similarity (ARS) for image retargeting quality assessment 2016,		6
115	Complex wavelet based quality assessment for AS-OCT images with application to Angle Closure Glaucoma diagnosis. <i>Computer Methods and Programs in Biomedicine</i> , 2016 , 130, 13-21	6.9	6
114	Perceptual quality evaluation for motion deblurring. IET Computer Vision, 2018, 12, 796-805	1.4	6
113	No-reference quality assessment of compressive sensing image recovery. <i>Signal Processing: Image Communication</i> , 2017 , 58, 165-174	2.8	6
112	Facial action recognition using very deep networks for highly imbalanced class distribution 2017,		6
111	DIBR-Synthesized Image Quality Assessment via Statistics of Edge Intensity and Orientation. <i>IEICE Transactions on Information and Systems</i> , 2017 , E100.D, 1929-1933	0.6	6
110	Content-based image quality assessment using semantic information and luminance differences. <i>Electronics Letters</i> , 2014 , 50, 1435-1436	1.1	6
109	An Overview of Perceptual Processing for Digital Pictures 2012,		6
108	An evaluation on circularly orthogonal moments for image representation 2011,		6
107	Towards a blind image quality evaluator using multi-scale second-order statistics. <i>Signal Processing: Image Communication</i> , 2019 , 71, 88-99	2.8	6
106	Inferring Personality Traits from Attentive Regions of User Liked Images Via Weakly Supervised Dual Convolutional Network. <i>Neural Processing Letters</i> , 2020 , 51, 2105-2121	2.4	6
105	. IEEE Transactions on Multimedia, 2021 , 23, 320-332	6.6	6
104	Spatiotemporal Representation Learning for Blind Video Quality Assessment. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	6
103	Personality Driven Multi-task Learning for Image Aesthetic Assessment 2019 ,		5
102	Personalized Image Aesthetics Assessment via Meta-Learning With Bilevel Gradient Optimization. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	5
101	Personalizing User Interfaces for improving quality of experience in VoD recommender systems 2016 ,		5
100	No-Reference Quality Metric of Blocking Artifacts Based on Color Discontinuity Analysis. <i>IEICE Transactions on Information and Systems</i> , 2014 , E97.D, 993-997	0.6	5

99	A novel SVD-based image quality assessment metric 2013 ,		5
98	Using multiscale analysis for blind quality assessment of DIBR-synthesized images 2017,		5
97	Rank learning on training set selection and image quality assessment 2014 ,		5
96	Gaussian Noise Level Estimation in SVD Domain for Images 2012 ,		5
95	Two dimensional Singular Value Decomposition (2D-SVD) based video coding 2010,		5
94	McFIS in hierarchical bipredictve pictures-based video coding for referencing the stable area in a scene 2011 ,		5
93	Contrastive Self-supervised Pre-training for Video Quality Assessment. <i>IEEE Transactions on Image Processing</i> , 2021 , PP,	8.7	5
92	CNN-GRNN for Image Sharpness Assessment. <i>Lecture Notes in Computer Science</i> , 2017 , 50-61	0.9	5
91	No-reference quality index of depth images based on statistics of edge profiles for view synthesis. <i>Information Sciences</i> , 2020 , 516, 205-219	7.7	5
90	Salient Object Detection by Spatiotemporal and Semantic Features in Real-Time Video Processing Systems. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 9893-9903	8.9	5
89	Temporal Reasoning Guided QoE Evaluation for Mobile Live Video Broadcasting. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 3279-3292	8.7	5
88	Deep Hyperspectral Image Fusion Network With Iterative Spatio-Spectral Regularization. <i>IEEE Transactions on Computational Imaging</i> , 2022 , 8, 201-214	4.5	5
87	Dense correspondence based prediction for image set compression 2015,		4
86	No reference quality assessment for screen content images 2017 ,		4
85	Reduced-reference quality assessment of DIBR-synthesized images based on multi-scale edge intensity similarity. <i>Multimedia Tools and Applications</i> , 2018 , 77, 21033-21052	2.5	4
84	A benchmark for robustness analysis of visual tracking algorithms 2016 ,		4
83	Saliency Guided Gradient Similarity for Fast Perceptual Blur Assessment. <i>IEICE Transactions on Information and Systems</i> , 2015 , E98.D, 1613-1616	0.6	4
82	Emotional facial expression transfer based on temporal restricted Boltzmann machines 2014,		4

81	Rate-perceptual-distortion optimization (RpDO) based picture coding [Issues and challenges 2014 ,		4
80	High Capacity Watermark Embedding Based on Invariant Regions of Visual Saliency. <i>IEICE</i> Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, E94-A, 889-8	193 ⁴	4
79	Bayesian error concealment with DCT pyramid 2010 ,		4
78	Unequal Clustering Scheme Based LEACH for Wireless Sensor Networks 2010,		4
77	Machine learning based modeling of spatial and temporal factors for video quality assessment 2011 ,		4
76	Image error-concealment via Block-based Bilateral Filtering 2008,		4
75	Object-level Attention for Aesthetic Rating Distribution Prediction 2020,		4
74	Quality assessment for image super-resolution based on energy change and texture variation 2016,		4
73	. IEEE Transactions on Multimedia, 2021 , 1-1	6.6	4
72	Pyramidal modeling of geometric distortions for retargeted image quality evaluation. <i>Multimedia Tools and Applications</i> , 2018 , 77, 13799-13820	2.5	4
71	Blind quality assessment of gamut-mapped images via local and global statistical analysis. <i>Journal of Visual Communication and Image Representation</i> , 2019 , 61, 250-259	2.7	3
70	Blind Quality Index of Depth Images Based on Structural Statistics for View Synthesis. <i>IEEE Signal Processing Letters</i> , 2020 , 27, 685-689	3.2	3
69	Active Inference of GAN for No-Reference Image Quality Assessment 2020,		3
68	. IEEE Transactions on Multimedia, 2020 , 1-1	6.6	3
67	Image Pattern Similarity Index and Its Application to Task-Specific Transfer Learning. <i>IEICE Transactions on Information and Systems</i> , 2017 , E100.D, 3032-3035	0.6	3
66	Visual quality metric for perceptual video coding 2013,		3
65	Multi-task rank learning for image quality assessment 2015,		3
64	Study on subjective quality assessment of Digital Compound Images 2014 ,		3

63	Lossless video compression with optimal compression plane determination 2009,		3
62	Shifted Window Based Filtering for Alleviating Blocking Artifacts. Signal Processing Systems Design and Implementation (siPS), IEEE Workshop on, 2007,		3
61	SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 8686-8701	8.7	3
60	Perceptual evaluation of Compressive Sensing Image Recovery 2016 ,		3
59	Color-Enriched Gradient Similarity for Retouched Image Quality Evaluation. <i>IEICE Transactions on Information and Systems</i> , 2016 , E99.D, 773-776	0.6	3
58	Efficient Lagrange multiplier selection algorithm for depth maps coding. <i>Electronics Letters</i> , 2016 , 52, 1681-1683	1.1	3
57	QoE Evaluation for Live Broadcasting Video 2019 ,		3
56	. IEEE Transactions on Multimedia, 2021 , 23, 955-966	6.6	3
55	Predicting the Quality of View Synthesis With Color-Depth Image Fusion. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 31, 2509-2521	6.4	3
54	LGGD+: Image Retargeting Quality Assessment by Measuring Local and Global Geometric Distortions. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	3
53	Fine-Grained Image Quality Assessment: A Revisit and Further Thinking. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	3
52	Cloud Based Image Contrast Enhancement 2015 ,		2
51	Advances in Multimedia Content Analysis and Signal Processing. <i>Journal of Signal Processing Systems</i> , 2014 , 74, 1-3	1.4	2
50	On creating low dimensional 3D feature descriptors with PCA 2017 ,		2
49	Observation model based perceptually motivated bilateral filter for image reconstruction 2015,		2
48	Reduced-reference image quality assessment with orientation selectivity based visual pattern 2015 ,		2
47	Objective visual quality assessment for 3D meshes 2014 ,		2
46	Image Watermarking Based on Invariant Representation of Polar Sine Transform. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2011 , E94-A, 2048-2052	0.4	2

45	Comparison between H.264/AVC and Motion jpeg2000 for super-high definition video coding 2010 ,		2
44	Efficient Video Coding Considering a Video as a 3D Data Cube 2011 ,		2
43	Fast environment matting extraction using compressive sensing 2011,		2
42	Adaptive downsampling/upsampling for better video compression at low bit rate 2008,		2
41	No-reference quality assessment for live broadcasting videos in temporal and spatial domains. <i>IET Image Processing</i> , 2020 , 14, 774-781	1.7	2
40	Perceptual quality assessment for multimodal medical image fusion. <i>Signal Processing: Image Communication</i> , 2020 , 85, 115852	2.8	2
39	Blind Realistic Blur Assessment Based on Discrepancy Learning. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2020 , 30, 3859-3869	6.4	2
38	CUID: A New Study Of Perceived Image Quality And Its Subjective Assessment 2020,		2
37	No-Reference Quality Prediction for DIBR-Synthesized Images Using Statistics of Fused Color-Depth Images 2020 ,		2
36	An Improved PSO Algorithm for Interval Multi-Objective Optimization Systems. <i>IEICE Transactions on Information and Systems</i> , 2016 , E99.D, 2381-2384	0.6	2
35	Color space identification from single images 2016 ,		2
34	Internal generative mechanism driven blind quality index for deblocked images. <i>Multimedia Tools and Applications</i> , 2019 , 78, 12583-12605	2.5	2
33	. IEEE Transactions on Multimedia, 2021 , 23, 2757-2769	6.6	2
32	Omnidirectional Image Quality Assessment by Distortion Discrimination Assisted Multi-Stream Network. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	2
31	Blind Image Quality Index for Authentic Distortions With Local and Global Deep Feature Aggregation. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	2
30	StereoARS: Quality Evaluation for Stereoscopic Image Retargeting With Binocular Inconsistency Detection. <i>IEEE Transactions on Broadcasting</i> , 2021 , 1-15	4.7	2
29	Quality Measurement of Screen Images via Foreground Perception and Background Suppression. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2021 , 70, 1-11	5.2	2
28	Study of Natural Scene Categories in Measurement of Perceived Image Quality. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2022 , 71, 1-12	5.2	2

27	Quality Index for Benchmarking Image Inpainting Algorithms with Guided Regional Statistics. <i>IEICE Transactions on Information and Systems</i> , 2019 , E102.D, 1430-1433	0.6	1
26	Signal-Independent Separable KLT by Offline Training for Video Coding. <i>IEEE Access</i> , 2019 , 7, 33087-330	93 ;	1
25	No-reference quality assessment for contrast-distorted images based on multifaceted statistical representation of structure. <i>Journal of Visual Communication and Image Representation</i> , 2019 , 60, 158-16	69 ⁷	1
24	The effect of social exclusion on persuasiveness of feelings versus reasons in advertisements: the moderating role of culture. <i>International Journal of Advertising</i> , 2020 , 39, 1252-1273	3.6	1
23	No reference quality evaluation of medical image fusion. <i>International Journal of Imaging Systems and Technology</i> , 2018 , 28, 267-273	2.5	1
22	Performance scoring of singing voice 2015 ,		1
21	3D point cloud simplification for image-based localization 2015 ,		1
20	Operational rate-distortion shape coding with dual error regularization 2014,		1
19	Visual attention model for target search in cluttered scene 2011 ,		1
18	A comparative study on attention-based rate adaptation for scalable video coding 2009,		1
17	SPIQ: A Self-Supervised Pre-Trained Model for Image Quality Assessment. <i>IEEE Signal Processing Letters</i> , 2022 , 29, 513-517	3.2	1
16	Image Inpainting Based on Adaptive Total Variation Model. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2011 , E94-A, 1608-1612	0.4	1
15	Image Quality Assessment Based on Low Order Moment Features. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2014 , E97.A, 538-542	0.4	1
14	Aesthetics-Assisted Multi-task Learning with Attention for Image Memorability Prediction 2020,		1
13	Detection and estimation of supra-threshold distortion levels of pictures based on just-noticeable difference 2016 ,		1
12	Just Noticeable Difference for Deep Machine Vision. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	1
11	Internal Generative Mechanism Driven Blind Quality Index for Deblocked Images 2018,		1
10	Illumination Unification for Person Re-Identification. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2022 , 1-1	6.4	1

9	Blind Image Quality Assessment for Authentic Distortions by Intermediary Enhancement and Iterative Training. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2022 , 1-1	6.4	1
8	Learning Personalized Image Aesthetics from Subjective and Objective Attributes. <i>IEEE Transactions on Multimedia</i> , 2021 , 1-1	6.6	O
7	Deep Learning-based Perceptual Video Quality Enhancement for 3D Synthesized View. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2022 , 1-1	6.4	0
6	Hierarchical Discrepancy Learning for Image Restoration Quality Assessment. <i>Signal Processing</i> , 2022 , 108595	4.4	O
5	IE-IQA: Intelligibility Enriched Generalizable No-Reference Image Quality Assessment. <i>Frontiers in Neuroscience</i> , 2021 , 15, 739138	5.1	
4	No-Reference Quality Index for View Synthesis Based on Multi-scale Texture Naturalness. <i>Communications in Computer and Information Science</i> , 2018 , 300-309	0.3	
3	No-Reference Quality Assessment of Camera-Captured Distortion Images. <i>Lecture Notes in Computer Science</i> , 2016 , 590-599	0.9	
2	Video Frame Synthesis via Plug-and-Play Deep Locally Temporal Embedding. <i>IEEE Access</i> , 2019 , 7, 1793	30 4. 1 79	9319
1	Pyramid Feature Aggregation for Hierarchical Quality Prediction of Stitched Panoramic Images. IEEE Transactions on Multimedia. 2022. 1-1	6.6	