## Yangxian Liu

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1949734/yangxian-liu-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

124<br/>papers4,736<br/>citations43<br/>h-index63<br/>g-index125<br/>ext. papers5,886<br/>ext. citations7.9<br/>avg, IF6.9<br/>L-index

| #   | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF   | Citations |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 124 | A thermally activated double oxidants advanced oxidation system for gaseous H2S removal: Mechanism and kinetics. <i>Chemical Engineering Journal</i> , <b>2022</b> , 434, 134430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.7 | 3         |
| 123 | Fe2+/heat-coactivated PMS oxidation-absorption system for H2S removal from gas phase. <i>Separation and Purification Technology</i> , <b>2022</b> , 286, 120458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.3  | 2         |
| 122 | A review on removal of mercury from flue gas utilizing existing air pollutant control devices (APCDs) <i>Journal of Hazardous Materials</i> , <b>2022</b> , 427, 128132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.8 | 4         |
| 121 | A novel double metal ions-double oxidants coactivation system for NO and SO2 simultaneous removal. <i>Chemical Engineering Journal</i> , <b>2022</b> , 432, 134398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.7 | 4         |
| 120 | Removal of gaseous H2S using microalgae porous carbons synthesized by thermal/microwave KOH activation. <i>Journal of the Energy Institute</i> , <b>2022</b> , 101, 45-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7  | 1         |
| 119 | Oxidation Absorption of Hg0 in the Gas Phase Using a Double CatalyzersDouble Oxidants Coactivation Technology. <i>Energy &amp; Double Section</i> 2022, 36, 2656-2665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1  | 1         |
| 118 | Oxidative removal of gaseous hydrogen sulfide by a dual ions-dual oxidants coupling activation system. <i>Chemical Engineering Research and Design</i> , <b>2022</b> , 161, 454-465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5  |           |
| 117 | Biochars derived from by-products of microalgae pyrolysis for sorption of gaseous H2S. <i>Journal of Environmental Chemical Engineering</i> , <b>2022</b> , 10, 107370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.8  | 0         |
| 116 | Gaseous Hydrogen Sulfide Removal Using Macroalgae Biochars Modified Synergistically by H2SO4/H2O2. <i>Chemical Engineering and Technology</i> , <b>2021</b> , 44, 698-709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2    | 3         |
| 115 | Porous Biochars Derived from Microalgae Pyrolysis for CO2 Adsorption. <i>Energy &amp; amp; Fuels</i> , <b>2021</b> , 35, 7646-7656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.1  | 8         |
| 114 | Adsorption of elemental mercury in flue gas using biomass porous carbons modified by microwave/hydrogen peroxide. <i>Fuel</i> , <b>2021</b> , 291, 120152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1  | 33        |
| 113 | Stratified combustion characteristics analysis and assisted-ignition strategy optimization in a natural gas blended diesel Wankel engine. <i>Fuel</i> , <b>2021</b> , 292, 120192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.1  | 6         |
| 112 | Experimental and kinetic study on Hg0 removal by microwave/hydrogen peroxide modified seaweed-based porous biochars. <i>Environmental Technology and Innovation</i> , <b>2021</b> , 22, 101411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7    | 10        |
| 111 | Hg0 Removal by Straw Biochars Prepared with Clean Microwave/H2O2 Modification. <i>Chemical Engineering and Technology</i> , <b>2021</b> , 44, 1460-1469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2    | 0         |
| 110 | A review on arsenic removal from coal combustion: Advances, challenges and opportunities. <i>Chemical Engineering Journal</i> , <b>2021</b> , 414, 128785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.7 | 21        |
| 109 | A Critical Review on Removal of Gaseous Pollutants Using Sulfate Radical-based Advanced Oxidation Technologies. <i>Environmental Science &amp; Environmental Science &amp; Environmental</i> | 10.3 | 21        |
| 108 | Experimental Investigation on the Effect of Blending Ethanol on Combustion Characteristic and Idle Performance in a Gasoline Rotary Engine. <i>Journal of Thermal Science</i> , <b>2021</b> , 30, 1187-1198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9  | 1         |

### (2020-2021)

| 107 | Review on Removal of SO2, NOx, Mercury, and Arsenic from Flue Gas Using Green Oxidation Absorption Technology. <i>Energy &amp; Discounty of Society</i> 2021, 35, 9775-9794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1  | 11 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 106 | Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review. <i>Environmental Chemistry Letters</i> , <b>2021</b> , 19, 941-967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.3 | 21 |
| 105 | Elemental mercury capture from industrial gas emissions using sulfides and selenides: a review. <i>Environmental Chemistry Letters</i> , <b>2021</b> , 19, 1395-1411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.3 | 8  |
| 104 | Carbon dioxide capture using liquid absorption methods: a review. <i>Environmental Chemistry Letters</i> , <b>2021</b> , 19, 77-109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.3 | 41 |
| 103 | Copper Sulfide-Loaded Boron Nitride Nanosheets for Elemental Mercury Removal from Simulated Flue Gas. <i>Energy &amp; Energy &amp;</i> | 4.1  | 9  |
| 102 | Removal of pollutants from gas streams using Fenton (-like)-based oxidation systems: A review.<br>Journal of Hazardous Materials, <b>2021</b> , 416, 125927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.8 | 21 |
| 101 | Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO2 adsorption. <i>Fuel</i> , <b>2021</b> , 306, 121762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1  | 14 |
| 100 | Removal of Elemental Mercury Using Seaweed Biomass-Based Porous Carbons Prepared from Microwave Activation and H2O2 Modification. <i>Energy &amp; Energy </i>                 | 4.1  | 2  |
| 99  | Optimization analysis of polyurethane based mixed matrix gas separation membranes by incorporation of gamma-cyclodextrin metal organic frame work. <i>Chemical Papers</i> , <b>2020</b> , 74, 3527-3543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9  | 8  |
| 98  | Oxidation absorption of hydrogen sulfide from gas stream using vacuum ultraviolet/H2O2/urea wet scrubbing system. <i>Chemical Engineering Research and Design</i> , <b>2020</b> , 140, 348-355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5  | 14 |
| 97  | Removal of gaseous hydrogen sulfide using ultraviolet/Oxone-induced oxidation scrubbing system. <i>Chemical Engineering Journal</i> , <b>2020</b> , 393, 124740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.7 | 27 |
| 96  | A review on application of cerium-based oxides in gaseous pollutant purification. <i>Separation and Purification Technology</i> , <b>2020</b> , 250, 117181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.3  | 41 |
| 95  | Removal of nitric oxide from flue gas using novel microwave-activated double oxidants system. <i>Chemical Engineering Journal</i> , <b>2020</b> , 393, 124754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.7 | 34 |
| 94  | State-of-the-art review on capture of CO2 using adsorbents prepared from waste materials. <i>Chemical Engineering Research and Design</i> , <b>2020</b> , 139, 1-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5  | 41 |
| 93  | A review on coal fly ash-based adsorbents for mercury and arsenic removal. <i>Journal of Cleaner Production</i> , <b>2020</b> , 267, 122143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.3 | 60 |
| 92  | Novel Simultaneous Removal Technology of NO and SO Using a Semi-Dry Microwave Activation Persulfate System. <i>Environmental Science &amp; Environmental Sci</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.3 | 46 |
| 91  | Photocatalytic oxidation removal of elemental mercury from flue gas. A review. <i>Environmental Chemistry Letters</i> , <b>2020</b> , 18, 417-431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.3 | 25 |
| 90  | Novel carbon-based sorbents for elemental mercury removal from gas streams: A review. <i>Chemical Engineering Journal</i> , <b>2020</b> , 391, 123514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7 | 56 |

| 89 | Study on removal of gaseous hydrogen sulfide based on macroalgae biochars. <i>Journal of Natural Gas Science and Engineering</i> , <b>2020</b> , 73, 103068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.6  | 34 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 88 | Review on Magnetic Adsorbents for Removal of Elemental Mercury from Flue Gas. <i>Energy &amp; Energy &amp; Energ</i> | 4.1  | 21 |
| 87 | Absorption of H2S from Gas Streams by the Wet Ultraviolet/Persulfate Oxidation Process: Mechanism and Kinetics. <i>Energy &amp; Description</i> 2020, 34, 8037-8045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1  | 14 |
| 86 | Removal of CO2 from Flue Gas Using Seaweed Porous Carbons Prepared by Urea Doping and KOH Activation. <i>Energy &amp; Doping and KOH Activation</i> . <i>Energy &amp; Doping and KOH Activation</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.1  | 4  |
| 85 | Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars. <i>Fuel</i> , <b>2020</b> , 260, 116382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1  | 96 |
| 84 | Sorbents for hydrogen sulfide capture from biogas at low temperature: a review. <i>Environmental Chemistry Letters</i> , <b>2020</b> , 18, 113-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.3 | 31 |
| 83 | Preparation of magnetic Co-Fe modified porous carbon from agricultural wastes by microwave and steam activation for mercury removal. <i>Journal of Hazardous Materials</i> , <b>2020</b> , 381, 120981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.8 | 77 |
| 82 | Enhancement in the selectivity of O/N via ZIF-8/CA mixed-matrix membranes and the development of a thermodynamic model to predict the permeability of gases. <i>Environmental Science and Pollution Research</i> , <b>2020</b> , 27, 24413-24429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.1  | 3  |
| 81 | Seaweed bio-chars modified with metal chloride for elemental mercury capture from simulated flue gas. <i>Atmospheric Pollution Research</i> , <b>2020</b> , 11, 122-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5  | 5  |
| 80 | Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas. <i>Science of the Total Environment</i> , <b>2019</b> , 697, 134049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.2 | 66 |
| 79 | Mercury removal from flue gas by magnetic iron-copper oxide modified porous char derived from biomass materials. <i>Fuel</i> , <b>2019</b> , 256, 115977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.1  | 70 |
| 78 | Removal of gaseous elemental mercury using seaweed chars impregnated by NH4Cl and NH4Br. <i>Journal of Cleaner Production</i> , <b>2019</b> , 216, 277-287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.3 | 52 |
| 77 | Simultaneous Removal of SO2 and NO Using H2O2/Urea Activated by Vacuum Ultraviolet Light in a Pilot-Scale Spraying Tower. <i>Energy &amp; Energy &amp; 2019</i> , 33, 1325-1333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1  | 11 |
| 76 | Elimination of nitric oxide using new Fenton process based on synergistic catalysis: Optimization and mechanism. <i>Chemical Engineering Journal</i> , <b>2019</b> , 372, 92-98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.7 | 55 |
| 75 | Oxidation removal of gaseous Hg0 using enhanced-Fenton system in a bubble column reactor. <i>Fuel</i> , <b>2019</b> , 246, 358-364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1  | 59 |
| 74 | Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal. <i>Chemical Engineering Journal</i> , <b>2019</b> , 370, 944-951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.7 | 42 |
| 73 | Oxidation Removal of CO from Flue Gas Using Two Fenton-like Wet Scrubbing Systems. <i>Energy &amp; Energy Enels</i> , <b>2019</b> , 33, 2961-2966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1  | 13 |
| 72 | Oxidative Absorption of Elemental Mercury from Flue Gas Using a Modified Fenton-like Wet Scrubbing System. <i>Energy &amp; amp; Fuels</i> , <b>2019</b> , 33, 3028-3033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.1  | 18 |

#### (2018-2019)

| 71 | Gaseous elemental mercury removal using VUV and heat coactivation of Oxone/H2O/O2 in a VUV-spraying reactor. <i>Fuel</i> , <b>2019</b> , 243, 352-361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1  | 43 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 70 | Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon. <i>Chemical Engineering Journal</i> , <b>2019</b> , 366, 41-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.7 | 63 |
| 69 | Recent developments on gasBolid heterogeneous oxidation removal of elemental mercury from flue gas. <i>Environmental Chemistry Letters</i> , <b>2019</b> , 17, 19-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.3 | 33 |
| 68 | Removal of Carbon Monoxide from Simulated Flue Gas Using Two New Fenton Systems: Mechanism and Kinetics. <i>Environmental Science &amp; Environmental Scienc</i> | 10.3 | 13 |
| 67 | Removal of Elemental Mercury from Flue Gas Using Microwave/Ultrasound-Activated Ce <b>E</b> e Magnetic Porous Carbon Derived from Biomass Straw. <i>Energy &amp; Description</i> 2019, 33, 8394-8402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.1  | 29 |
| 66 | Removal of Gaseous Hydrogen Sulfide by a Photo-Fenton Wet Oxidation Scrubbing System. <i>Energy</i> & <i>amp; Fuels</i> , <b>2019</b> , 33, 10812-10819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1  | 20 |
| 65 | Gaseous Elemental Mercury Removal Using Combined Metal Ions and Heat Activated Peroxymonosulfate/H2O2 Solutions. <i>AICHE Journal</i> , <b>2019</b> , 65, 161-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.6  | 27 |
| 64 | Effects of experimental parameters on simultaneous removal of SO2 and NO by VUV/H2O2 advanced oxidation process in a pilot-scale photochemical spraying tower. <i>Journal of Chemical Technology and Biotechnology</i> , <b>2019</b> , 94, 721-729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5  | 5  |
| 63 | A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas. <i>Environmental Chemistry Letters</i> , <b>2019</b> , 17, 259-276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.3 | 33 |
| 62 | Separation of hydrogen sulfide from gas phase using Ce3+/Mn2+-enhanced fenton-like oxidation system. <i>Chemical Engineering Journal</i> , <b>2019</b> , 359, 1486-1492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.7 | 43 |
| 61 | Removal of gaseous hydrogen sulfide using Fenton reagent in a spraying reactor. Fuel, 2019, 239, 70-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1  | 63 |
| 60 | Highly Efficient Adsorption of Oils and Pollutants by Porous Ultrathin Oxygen-Modified BCN Nanosheets. <i>ACS Sustainable Chemistry and Engineering</i> , <b>2019</b> , 7, 3234-3242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.3  | 12 |
| 59 | Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine. <i>Applied Energy</i> , <b>2019</b> , 233-234, 453-467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.7 | 52 |
| 58 | Gas-phase elemental mercury removal using ammonium chloride impregnated sargassum chars. <i>Environmental Technology (United Kingdom)</i> , <b>2019</b> , 40, 1923-1936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.6  | 16 |
| 57 | Effect of hydrogen injection strategies on mixture formation and combustion process in a hydrogen direct injection plus natural gas port injection rotary engine. <i>Energy Conversion and Management</i> , <b>2018</b> , 160, 150-164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.6 | 45 |
| 56 | Removal of elemental mercury from flue gas using red mud impregnated by KBr and KI reagent. <i>Chemical Engineering Journal</i> , <b>2018</b> , 341, 483-494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.7 | 65 |
| 55 | Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine. <i>Chemical Engineering Journal</i> , <b>2018</b> , 339, 468-478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.7 | 98 |
| 54 | Numerical investigation of mixture formation and combustion in a hydrogen direct injection plus natural gas port injection (HDIIIINGPI) rotary engine. <i>International Journal of Hydrogen Energy</i> , <b>2018</b> , 43, 4632-4644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.7  | 25 |

| 53 | Oxidation Removal of Nitric Oxide from Flue Gas Using an Ultraviolet Light and Heat Coactivated Oxone System. <i>Energy &amp; Documents</i> , 2018, 32, 1999-2008                                                                             | 4.1                                      | 27  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----|
| 52 | Simultaneous absorption Dixidation of nitric oxide and sulfur dioxide using ammonium persulfate synergistically activated by UV-light and heat. <i>Chemical Engineering Research and Design</i> , <b>2018</b> , 130, 32                       | ı <i>-</i> <del>3</del> : <del>3</del> 3 | 30  |
| 51 | A review on modification methods of adsorbents for elemental mercury from flue gas. <i>Chemical Engineering Journal</i> , <b>2018</b> , 346, 692-711                                                                                          | 14.7                                     | 108 |
| 50 | Removal of NO in flue gas using vacuum ultraviolet light/ultrasound/chlorine in a VUV-US coupled reactor. <i>Fuel Processing Technology</i> , <b>2018</b> , 169, 226-235                                                                      | 7.2                                      | 18  |
| 49 | Simultaneous removal of NO and SO using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS). <i>Chemosphere</i> , <b>2018</b> , 190, 431-441                                                                                          | 8.4                                      | 118 |
| 48 | Simultaneous absorption of SO and NO from flue gas using ultrasound/Fe/heat coactivated persulfate system. <i>Journal of Hazardous Materials</i> , <b>2018</b> , 342, 326-334                                                                 | 12.8                                     | 141 |
| 47 | The influence of hydrogen injection strategy on mixture formation and combustion process in a port injection (PI) rotary engine fueled with natural gas/hydrogen blends. <i>Energy Conversion and Management</i> , <b>2018</b> , 173, 527-538 | 10.6                                     | 27  |
| 46 | Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound. <i>Fuel Processing Technology</i> , <b>2018</b> , 170, 21-31                                                                 | 7.2                                      | 72  |
| 45 | Removal of elemental mercury from flue gas using sargassum chars modified by NH4Br reagent. <i>Fuel</i> , <b>2018</b> , 214, 196-206                                                                                                          | 7.1                                      | 92  |
| 44 | Removal of Hg0 from Simulated Flue Gas by Ultraviolet Light/Heat/Persulfate Process in an UV-Impinging Stream Reactor. <i>Energy &amp; Energy &amp; 2018</i> , 32, 12416-12425                                                                | 4.1                                      | 25  |
| 43 | Oxidation Absorption of Gaseous H2S Using Fenton-Like Advanced Oxidation Systems. <i>Energy &amp; Energy Fuels</i> , <b>2018</b> , 32, 11289-11295                                                                                            | 4.1                                      | 25  |
| 42 | Elemental mercury removal from flue gas using heat and Co2+/Fe2+ coactivated oxone oxidation system. <i>Chemical Engineering Journal</i> , <b>2018</b> , 348, 464-475                                                                         | 14.7                                     | 78  |
| 41 | Oxidation-separation kinetics of nitric oxide from flue gas using ferrate (VI) reagent in a spraying reactor. <i>Canadian Journal of Chemical Engineering</i> , <b>2017</b> , 95, 1364-1372                                                   | 2.3                                      | 2   |
| 40 | Removal of NO from flue gas using UV/S2 process in a novel photochemical impinging stream reactor. <i>AICHE Journal</i> , <b>2017</b> , 63, 2968-2980                                                                                         | 3.6                                      | 39  |
| 39 | Removal of elemental Mercury from flue gas using wheat straw chars modified by KFeO reagent. <i>Environmental Technology (United Kingdom)</i> , <b>2017</b> , 38, 3047-3054                                                                   | 2.6                                      | 19  |
| 38 | Removal of nitric oxide from flue gas using sulfate/hydroxyl radicals from activation of oxone with cobalt and high temperature. <i>Environmental Progress and Sustainable Energy</i> , <b>2017</b> , 36, 1013-1021                           | 2.5                                      | 7   |
| 37 | Effect of gas-phase reaction on catalytic reaction for H2/O2 mixture in micro combustor. <i>International Journal of Hydrogen Energy</i> , <b>2017</b> , 42, 16855-16865                                                                      | 6.7                                      | 17  |
| 36 | Oxidative removal of NO from flue gas using ultrasound, Mn2+/Fe2+ and heat coactivation of Oxone in an ultrasonic bubble reactor. <i>Chemical Engineering Journal</i> , <b>2017</b> , 326, 1166-1176                                          | 14.7                                     | 77  |

### (2014-2017)

| 35                         | Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation. <i>Chemical Engineering Journal</i> , <b>2017</b> , 326, 169-181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.7                       | 107                                                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------|
| 34                         | Absorption of NO and Simultaneous Absorption of SO2/NO Using a Vacuum Ultraviolet Light/Ultrasound/KHSO5 System. <i>Energy &amp; Double to the Energy &amp; Double to the </i> | 4.1                        | 31                                                               |
| 33                         | Oxidation Removal of Nitric Oxide from Flue Gas Using UV Photolysis of Aqueous Hypochlorite. <i>Environmental Science &amp; Environmental Science &amp; Environm</i>             | 10.3                       | 65                                                               |
| 32                         | Effect of injection strategy on fuel-air mixing and combustion process in a direct injection diesel rotary engine (DI-DRE). <i>Energy Conversion and Management</i> , <b>2017</b> , 154, 68-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.6                       | 32                                                               |
| 31                         | Numerical investigation of the effect of injection strategy on mixture formation and combustion process in a port injection natural gas rotary engine. <i>Energy Conversion and Management</i> , <b>2017</b> , 133, 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-525                      | 39                                                               |
| 30                         | Simultaneous removal of Hg0 and SO2 from flue gas using vacuum ultraviolet radiation combining with absorption of urea solution. <i>International Journal of Coal Geology</i> , <b>2017</b> , 170, 41-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5                        | 17                                                               |
| 29                         | Simultaneous removal of NO and SO2 using aqueous peroxymonosulfate with coactivation of Cu2+/Fe3+ and high temperature. <i>AICHE Journal</i> , <b>2017</b> , 63, 1287-1302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6                        | 70                                                               |
| 28                         | Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O/HO/HO System in A Wet VUV-Spraying Reactor. <i>Environmental Science &amp; Dechnology</i> , <b>2016</b> , 50, 12966-12975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.3                       | 124                                                              |
| 27                         | Study on enhancement mechanism of NO absorption in K2FeO4 solution basing on mass transfer-reaction theory. <i>Chemical Engineering Research and Design</i> , <b>2016</b> , 111, 196-203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5                        | 19                                                               |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                  |
| 26                         | A review on removal of elemental mercury from flue gas using advanced oxidation process: Chemistry and process. <i>Chemical Engineering Research and Design</i> , <b>2016</b> , 112, 199-250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.5                        | 120                                                              |
| 26<br>25                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                        | 120                                                              |
|                            | Chemistry and process. <i>Chemical Engineering Research and Design</i> , <b>2016</b> , 112, 199-250  Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 61                                                               |
| 25                         | Chemistry and process. Chemical Engineering Research and Design, 2016, 112, 199-250  Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas. Energy Conversion and Management, 2015, 103, 218-234  A study on removal of elemental mercury in flue gas using fenton solution. Journal of Hazardous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.6                       | 61                                                               |
| 25<br>24                   | Chemistry and process. Chemical Engineering Research and Design, 2016, 112, 199-250  Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas. Energy Conversion and Management, 2015, 103, 218-234  A study on removal of elemental mercury in flue gas using fenton solution. Journal of Hazardous Materials, 2015, 292, 164-72  A comparative study on combustion characteristics of methane, propane and hydrogen fuels in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.6                       | 61<br>65                                                         |
| 25<br>24<br>23             | Chemistry and process. Chemical Engineering Research and Design, 2016, 112, 199-250  Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas. Energy Conversion and Management, 2015, 103, 218-234  A study on removal of elemental mercury in flue gas using fenton solution. Journal of Hazardous Materials, 2015, 292, 164-72  A comparative study on combustion characteristics of methane, propane and hydrogen fuels in a micro-combustor. International Journal of Hydrogen Energy, 2015, 40, 16587-16596  A novel process for removal of Hg0 from flue gas using urea/persulfate activated by high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.6<br>12.8<br>6.7        | <ul><li>61</li><li>65</li><li>63</li></ul>                       |
| 25<br>24<br>23<br>22       | Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas.  Energy Conversion and Management, 2015, 103, 218-234  A study on removal of elemental mercury in flue gas using fenton solution. Journal of Hazardous Materials, 2015, 292, 164-72  A comparative study on combustion characteristics of methane, propane and hydrogen fuels in a micro-combustor. International Journal of Hydrogen Energy, 2015, 40, 16587-16596  A novel process for removal of Hg0 from flue gas using urea/persulfate activated by high temperature in a spray reactor. Chemical Engineering Research and Design, 2015, 104, 828-834  Removal of Hg0 and simultaneous removal of Hg0/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor. Fuel, 2015, 145, 180-188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.6<br>12.8<br>6.7        | <ul><li>61</li><li>65</li><li>63</li><li>16</li></ul>            |
| 25<br>24<br>23<br>22<br>21 | Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas.  Energy Conversion and Management, 2015, 103, 218-234  A study on removal of elemental mercury in flue gas using fenton solution. Journal of Hazardous Materials, 2015, 292, 164-72  A comparative study on combustion characteristics of methane, propane and hydrogen fuels in a micro-combustor. International Journal of Hydrogen Energy, 2015, 40, 16587-16596  A novel process for removal of Hg0 from flue gas using urea/persulfate activated by high temperature in a spray reactor. Chemical Engineering Research and Design, 2015, 104, 828-834  Removal of Hg0 and simultaneous removal of Hg0/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor. Fuel, 2015, 145, 180-188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.6<br>12.8<br>6.7<br>5.5 | <ul><li>61</li><li>65</li><li>63</li><li>16</li><li>80</li></ul> |

| 17 | Photochemical Oxidation Removal of Hg0 from Flue Gas Containing SO2/NO by an Ultraviolet Irradiation/Hydrogen Peroxide (UV/H2O2) Process. <i>Energy &amp; Description</i> 2014, 28, 2135-2143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1   | 52  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 16 | Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor. <i>Environmental Science &amp; Environmental &amp; Environment</i>                                                                                                                                                                                                                                                                                                                                                                                                     | 10.3  | 128 |
| 15 | Removal of Hg0 from containing-SO2/NO flue gas by ultraviolet/H2O2 process in a novel photochemical reactor. <i>AICHE Journal</i> , <b>2014</b> , 60, 2275-2285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6   | 52  |
| 14 | A study on mass transferEeaction kinetics of NO absorption by using UV/H2O2/NaOH process. <i>Fuel</i> , <b>2013</b> , 108, 254-260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1   | 43  |
| 13 | Study on Mass Transfer-Reaction Kinetics of NO Removal from Flue Gas by Using a UV/Fenton-like Reaction. <i>Industrial &amp; Engineering Chemistry Research</i> , <b>2012</b> , 51, 12065-12072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.9   | 17  |
| 12 | Investigation on the Removal of NO from SO2-Containing Simulated Flue Gas by an Ultraviolet/Fenton-Like Reaction. <i>Energy &amp; Damp; Fuels</i> , <b>2012</b> , 26, 5430-5436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1   | 57  |
| 11 | A study on kinetics of NO absorption from flue gas by using UV/Fenton wet scrubbing. <i>Chemical Engineering Journal</i> , <b>2012</b> , 197, 468-474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.7  | 41  |
| 10 | Kinetic model of NO removal from SO2-containing simulated flue gas by wet UV/H2O2 advanced oxidation process. <i>Chemical Engineering Journal</i> , <b>2011</b> , 168, 183-189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.7  | 39  |
| 9  | Study on the Kinetics of NO Removal from Simulated Flue Gas by a Wet Ultraviolet/H2O2Advanced Oxidation Process. <i>Energy &amp; Energy &amp; Energy</i> | 4.1   | 12  |
| 8  | X-ray Photoelectron Spectroscopy (XPS) Investigation of Nitrogen Functionalities during Coal Char Combustion in O2/CO2 and O2/Ar Atmospheres. <i>Energy &amp; Energy &amp; Ener</i>             | 4.1   | 63  |
| 7  | Quantitative Analysis of NOx Reduction in Oxy-Coal Combustion. <i>Energy &amp; amp; Fuels</i> , <b>2011</b> , 25, 1146-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15421 | 14  |
| 6  | Wet Removal of Sulfur Dioxide and Nitric Oxide from Simulated Coal-Fired Flue Gas by UV/H2O2Advanced Oxidation Process. <i>Energy &amp; Documents</i> 24, 4931-4936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1   | 40  |
| 5  | Preliminary Study on a New Technique for Wet Removal of Nitric Oxide from Simulated Flue Gas with an Ultraviolet (UV)/H2O2Process. <i>Energy &amp; Damp; Fuels</i> , <b>2010</b> , 24, 4925-4930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.1   | 21  |
| 4  | Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H2O2 advanced oxidation process. <i>Science China Technological Sciences</i> , <b>2010</b> , 53, 1839-1846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.5   | 13  |
| 3  | Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process. <i>Chemical Engineering Journal</i> , <b>2010</b> , 162, 1006-1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.7  | 207 |
| 2  | Preparation of Straw Porous Biochars by Microwave-Assisted KOH Activation for Removal of Gaseous H2S. <i>Energy &amp; Fuels</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1   | 5   |
| 1  | Alkali Metal Poisoning and Regeneration of Selective Catalytic Reduction Denitration Catalysts: Recent Advances and Future Perspectives. <i>Energy &amp; Catalytic Reduction Denitration Catalysts</i> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.1   | 2   |