
Jonathan Grey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1949661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geographically widespread ¹³ Câ€depletion of grazing caddis larvae: A <i>third way</i> of fuelling stream food webs?. Freshwater Biology, 2019, 64, 787-798.	1.2	3
2	Bending the rules: exploitation of allochthonous resources by a topâ€predator modifies sizeâ€abundance scaling in stream food webs. Ecology Letters, 2018, 21, 1771-1780.	3.0	30
3	Invasive crayfish impacts on native fish diet and growth vary with fish life stage. Aquatic Sciences, 2017, 79, 113-125.	0.6	15
4	Modification of littoral algal assemblages by gardening caddisfly larvae. Freshwater Biology, 2017, 62, 507-518.	1.2	5
5	Bringing methanotrophy in rivers out of the shadows. Limnology and Oceanography, 2017, 62, 2345-2359.	1.6	23
6	Terrestrial support of lake food webs: Synthesis reveals controls over cross-ecosystem resource use. Science Advances, 2017, 3, e1601765.	4.7	92
7	The Incredible Lightness of Being Methane-Fuelled: Stable Isotopes Reveal Alternative Energy Pathways in Aquatic Ecosystems and Beyond. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	56
8	Dietary niche constriction when invaders meet natives: evidence from freshwater decapods. Journal of Animal Ecology, 2016, 85, 1098-1107.	1.3	42
9	No such thing as a free meal: organotin transfer across the freshwater–terrestrial interface. Freshwater Biology, 2016, 61, 2051-2062.	1.2	15
10	Angling baits and invasive crayfish as important trophic subsidies for a large cyprinid fish. Aquatic Sciences, 2015, 77, 153-160.	0.6	24
11	Microbial methane cycling in the bed of a chalk river: oxidation has the potential to match methanogenesis enhanced by warming. Freshwater Biology, 2015, 60, 150-160.	1.2	69
12	Riverbed methanotrophy sustained by high carbon conversion efficiency. ISME Journal, 2015, 9, 2304-2314.	4.4	32
13	Widespread methanotrophic primary production in lowland chalk rivers. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132854.	1.2	37
14	Invasive crayfish as drivers of fine sediment dynamics in rivers: field and laboratory evidence. Earth Surface Processes and Landforms, 2014, 39, 259-271.	1.2	49
15	Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshwater Biology, 2014, 59, 1123-1135.	1.2	101
16	Bayesian stable isotope mixing models. Environmetrics, 2013, 24, 387-399.	0.6	519
17	Accelerating rates of freshwater invasions in the catchment of the River Thames. Biological Invasions, 2013, 15, 945-951.	1.2	77
18	Warming alters community size structure and ecosystem functioning. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3011-3019.	1.2	148

#	Article	IF	CITATIONS
19	Dissolved carbon dioxide concentration controls baseline stable carbon isotope signatures of a lake food web. Limnology and Oceanography, 2012, 57, 1292-1302.	1.6	37
20	River bed carbon and nitrogen cycling: State of play and some new directions. Science of the Total Environment, 2012, 434, 143-158.	3.9	98
21	â€~House and garden': larval galleries enhance resource availability for a sedentary caddisfly. Freshwater Biology, 2012, 57, 2526-2538.	1.2	14
22	Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology. PLoS ONE, 2012, 7, e31757.	1.1	297
23	†Leaves and Eats Shoots': Direct Terrestrial Feeding Can Supplement Invasive Red Swamp Crayfish in Times of Need. PLoS ONE, 2012, 7, e42575.	1.1	56
24	High site fidelity and low site connectivity in temperate salt marsh fish populations: a stable isotope approach. Oecologia, 2012, 168, 245-255.	0.9	59
25	A review of allodiversity in Lake Naivasha, Kenya: Developing conservation actions to protect East African lakes from the negative impacts of alien species. Biological Conservation, 2011, 144, 2585-2596.	1.9	70
26	Biomonitoring of Human Impacts in Freshwater Ecosystems. Advances in Ecological Research, 2011, 44, 1-68.	1.4	212
27	Biogenic methane in freshwater food webs. Freshwater Biology, 2011, 56, 213-229.	1.2	153
28	Determining the strength of exploitative competition from an introduced fish: roles of density, biomass and body size. Ecology of Freshwater Fish, 2011, 20, 74-79.	0.7	22
29	Temporal variation in zebra mussel (Dreissena polymorpha) density structure the benthic food web and community composition on hard substrates in Lake Constance, Germany. Biological Invasions, 2011, 13, 2727-2738.	1.2	35
30	Potential carbon fixation via methane oxidation in wellâ€oxygenated river bed gravels. Limnology and Oceanography, 2010, 55, 560-568.	1.6	20
31	Gardening by the psychomyiid caddisfly Tinodes waeneri: evidence from stable isotopes. Oecologia, 2010, 163, 127-139.	0.9	21
32	Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes?. Journal of Paleolimnology, 2010, 43, 235-245.	0.8	51
33	The introduced Micropterus salmoides in an equatorial lake: a paradoxical loser in an invasion meltdown scenario?. Biological Invasions, 2010, 12, 3439-3448.	1.2	24
34	A trophic pathway from biogenic methane supports fish biomass in a temperate lake ecosystem. Oikos, 2010, 119, 409-416.	1.2	40
35	Back to the future: using palaeolimnology to infer longâ€term changes in shallow lake food webs. Freshwater Biology, 2010, 55, 600-613.	1.2	60
36	Laboratory measures of isotope discrimination factors: <scp>c</scp> omments on Caut, Angulo & Courchamp (2008, 2009). Journal of Applied Ecology, 2010, 47, 942-947.	1.9	46

#	Article	IF	CITATIONS
37	Biological influences on inter- and intraspecific isotopic variability among paired chondrostome fishes. Comptes Rendus - Biologies, 2010, 333, 613-621.	0.1	2
38	Potential carbon fixation via methane oxidation in well-oxygenated river bed gravels. Limnology and Oceanography, 2010, 55, 560-568.	1.6	19
39	Evidence for the role of methaneâ€derived carbon in a freeâ€flowing, lowland river food web. Limnology and Oceanography, 2009, 54, 1541-1547.	1.6	47
40	Status, ecology and conservation of an endemic fish, <i>Oreochromis niloticus baringoensis</i> , in Lake Baringo, Kenya. Aquatic Conservation: Marine and Freshwater Ecosystems, 2009, 19, 487-496.	0.9	13
41	Altered complementary feeding strategies of the consumers Hydrobia ulvae and Idotea emarginata via passive selectivity. Helgoland Marine Research, 2009, 63, 189-197.	1.3	4
42	Trade-off between morphological convergence and opportunistic diet behavior in fish hybrid zone. Frontiers in Zoology, 2009, 6, 26.	0.9	13
43	Stable isotope analysis of archived roach (<i>Rutilus rutilus</i>) scales for retrospective study of shallow lake responses to nutrient reduction. Freshwater Biology, 2009, 54, 1663-1670.	1.2	31
44	Unravelling complexities in benthic food webs using a dual stable isotope (hydrogen and carbon) approach. Freshwater Biology, 2009, 54, 2243-2251.	1.2	39
45	Hatching Asynchrony and Growth Trade-Offs Within Barn Swallow Broods. Condor, 2009, 111, 668-674.	0.7	16
46	WIDESPREAD CONTRIBUTION OF METHANE-CYCLE BACTERIA TO THE DIETS OF LAKE PROFUNDAL CHIRONOMID LARVAE. Ecology, 2008, 89, 857-864.	1.5	101
47	Lipid extraction has little effect on the δ ¹⁵ N of aquatic consumers. Limnology and Oceanography: Methods, 2007, 5, 338-342.	1.0	54
48	From introduction to fishery dominance: the initial impacts of the invasive carp <i>Cyprinus carpio </i> i>in Lake Naivasha, Kenya, 1999 to 2006. Journal of Fish Biology, 2007, 71, 239-257.	0.7	103
49	Food niches of cyclopoid copepods in eutrophic Plußsee determined by stable isotope analysis. Archiv Für Hydrobiologie, 2006, 167, 301-316.	1.1	19
50	Experimental d13C evidence for a contribution of methane to pelagic food webs in lakes. Limnology and Oceanography, 2006, 51, 2821-2827.	1.6	99
51	A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology, 2006, 43, 1213-1222.	1.9	361
52	Determination of zooplankton dietary shift following a zebra mussel invasion, as indicated by stable isotope analysis. Freshwater Biology, 2006, 51, 1310-1319.	1.2	48
53	Utilisation of dissolved organic carbon from different sources by pelagic bacteria in an acidic mining lake. Archiv Für Hydrobiologie, 2006, 165, 355-364.	1.1	17
54	Site-specific methane production and subsequent midge mediation within Esthwaite Water, UK. Archiv Für Hydrobiologie, 2006, 167, 317-334.	1.1	23

#	Article	IF	CITATIONS
55	Isotopic variation complicates analysis of trophic relations within the fish community of Plußsee: a small, deep, stratifying lake. Archiv Für Hydrobiologie, 2006, 167, 281-299.	1.1	38
56	Methane cycling in lake sediments and its influence on chironomid larval δ13C. FEMS Microbiology Ecology, 2005, 54, 339-350.	1.3	67
57	Selectivity and competitive interactions between two benthic invertebrate grazers (<i>Asellus) Tj ETQq1 1 0.7 ¹⁵N″abelled diatoms. Freshwater Biology, 2005, 50, 369-379.</i>	84314 rgB1 1.2	Overlock 10 47
58	Stable isotope analyses provide new insights into ecological plasticity in a mixohaline population of European eel. Oecologia, 2005, 144, 673-683.	0.9	98
59	Stable isotope analysis provides fresh insights into dietary separation between Chironomus anthracinus and C. plumosus. Journal of the North American Benthological Society, 2004, 23, 287-296.	3.0	39
60	Seasonal changes in the stable isotope values of lake-dwelling chironomid larvae in relation to feeding and life cycle variability. Freshwater Biology, 2004, 49, 681-689.	1.2	86
61	Zooplankton interactions in an enclosure experiment: insights from stable isotope analyses. Freshwater Biology, 2004, 49, 1495-1504.	1.2	10
62	The Utility of Carbon and Nitrogen Isotope Analyses to Trace Contributions from Fish Farms to the Receiving Communities of Freshwater Lakes: a Pilot Study in Esthwaite Water, UK. Hydrobiologia, 2004, 524, 253-262.	1.0	40
63	Seasonal variability in the gut ultrastructure of the parasitic copepod Neoergasilus japonicus (Copepoda, Poecilostomatoida). Canadian Journal of Zoology, 2004, 82, 1655-1666.	0.4	8
64	High intraspecific variability in carbon and nitrogen stable isotope ratios of lake chironomid larvae. Limnology and Oceanography, 2004, 49, 239-244.	1.6	102
65	Exploitation of a deep-water algal maximum by Daphnia: a stable-isotope tracer study. Hydrobiologia, 2003, 500, 95-101.	1.0	22
66	Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Communications in Mass Spectrometry, 2003, 17, 2605-2610.	0.7	146
67	A chironomid conundrum: queries arising from stable isotopes. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2002, 28, 102-105.	0.1	8
68	Ferox Trout (Salmo trutta) as `Russian dolls': complementary gut content and stable isotope analyses of the Loch Ness foodweb. Freshwater Biology, 2002, 47, 1235-1243.	1.2	71
69	Sources and fluxes of inorganic carbon in a deep, oligotrophic lake (Loch Ness, Scotland). Global Biogeochemical Cycles, 2001, 15, 863-870.	1.9	38
70	Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnology and Oceanography, 2001, 46, 505-513.	1.6	294
71	Ontogeny and dietary specialization in brown trout (Salmo trutta L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen. Ecology of Freshwater Fish, 2001, 10, 168-176.	0.7	100
72	Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia, 2000, 123, 232-240.	0.9	94

#	Article	IF	CITATIONS
73	Carbon stable isotopes reveal complex trophic interactions in lake plankton. , 1999, 13, 1311-1314.		32
74	An assessment, using stable isotopes, of the importance of allochthonous organic carbon sources to the pelagic food web in Loch Ness. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 105-110.	1.2	114
75	Temporal Patterns of Protozooplankton Abundance and Their Food in Ellis Fjord, Princess Elizabeth Land, Eastern Antarctica. Estuarine, Coastal and Shelf Science, 1997, 45, 17-25.	0.9	14
76	Microbial dynamics in coastal waters of East Antarctica:bacterial production and nanoflagellate bacterivory. Marine Ecology - Progress Series, 1996, 142, 3-17.	0.9	50