Chengjie Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1949647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery. Journal of Membrane Science, 2019, 572, 110-118.	8.2	153
2	Hybrid Membranes Dispersed with Superhydrophilic TiO ₂ Nanotubes Toward Ultraâ€5table and Highâ€Performance Vanadium Redox Flow Batteries. Advanced Energy Materials, 2020, 10, 1904041.	19.5	115
3	Bioinspired topological design of super hygroscopic complex for cost-effective atmospheric water harvesting. Nano Energy, 2021, 90, 106642.	16.0	57
4	High-yield solar-driven atmospheric water harvesting with ultra-high salt content composites encapsulated in porous membrane. Cell Reports Physical Science, 2021, 2, 100664.	5.6	52
5	A solar tube: Efficiently converting sunlight into electricity and heat. Nano Energy, 2019, 55, 269-276.	16.0	50
6	Nanostructured Three-Dimensional Percolative Channels for Separation of Oil-in-Water Emulsions. IScience, 2018, 6, 289-298.	4.1	44
7	Large-Scale, Uniform, and Superhydrophobic Titania Nanotubes at the Inner Surface of 1000 mm Long Titanium Tubes. Journal of Physical Chemistry C, 2017, 121, 15448-15455.	3.1	43
8	In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2013, 24, 3640-3645.	2.2	34
9	Coaxial anodic oxidation under dynamic electrolyte conditions for inner surface patterning of high-aspect-ratio and slim Ti tubes. Corrosion Science, 2017, 124, 193-197.	6.6	22
10	General Way To Compute the Intrinsic Contact Angle at Tubes. Journal of Physical Chemistry C, 2018, 122, 29210-29219.	3.1	21
11	Preparation, characterization and performance of Ti1â^'xAlxN/Ag/Ti1â^'xAlxN low-emissivity films. Applied Surface Science, 2014, 293, 259-264.	6.1	18
12	Interdigitated CuS/TiO2 Nanotube Bulk Heterojunctions Achieved via Ion Exchange. Electrochimica Acta, 2016, 199, 180-186.	5.2	17
13	Conformal Filling of TiO 2 Nanotubes with Dense M x S y Films for 3D Heterojunctions: The Anion Effect. ChemElectroChem, 2019, 6, 1177-1182.	3.4	10
14	Efficient demulsification of ultralow-concentration crude oil-in-water emulsion by three-dimensional superhydrophilic channels. Science China Materials, 2022, 65, 213-219.	6.3	10
15	Corrosion inhibition behaviors of ZrNx thin films with varied N vacancy concentration. Vacuum, 2019, 162, 28-38.	3.5	7
16	Effect of the varied nitrogen vacancy concentration on mechanical and electrical properties of ZrNx thin films. Thin Solid Films, 2019, 683, 57-66.	1.8	5