
Yingbin Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1949445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational Design of Hierarchical "Ceramicâ€inâ€Polymer―and "Polymerâ€inâ€Ceramic―Electrolytes for Dendriteâ€Free Solidâ€State Batteries. Advanced Energy Materials, 2019, 9, 1804004.	19.5	422
2	Solid Garnet Batteries. Joule, 2019, 3, 1190-1199.	24.0	352
3	In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy, 2019, 61, 119-125.	16.0	281
4	Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy and Environmental Science, 2020, 13, 127-134.	30.8	269
5	Monodispersed Carbon-Coated Cubic NiP ₂ Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage. ACS Nano, 2017, 11, 3705-3715.	14.6	231
6	All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. Journal of Power Sources, 2015, 300, 24-28.	7.8	204
7	Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. Journal of Materials Chemistry A, 2018, 6, 11463-11470.	10.3	186
8	Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries. Energy Storage Materials, 2020, 29, 361-366.	18.0	157
9	W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries. Electrochimica Acta, 2015, 180, 37-42.	5.2	146
10	A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nature Communications, 2021, 12, 176.	12.8	136
11	Comprehensive Investigation into Garnet Electrolytes Toward Application-Oriented Solid Lithium Batteries. Electrochemical Energy Reviews, 2020, 3, 656-689.	25.5	99
12	Interface engineering on cathode side for solid garnet batteries. Chemical Engineering Journal, 2020, 387, 124089.	12.7	80
13	Tracking Formation and Decomposition of Abacus-Ball-Shaped Lithium Peroxides in Li–O2 Cells. Journal of Physical Chemistry C, 2013, 117, 2623-2627.	3.1	78
14	Dynamics of the Garnet/Li Interface for Dendrite-Free Solid-State Batteries. ACS Energy Letters, 2020, 5, 2156-2164.	17.4	76
15	Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability. Journal of Power Sources, 2019, 420, 15-21.	7.8	61
16	Novel one-step gas-phase reaction synthesis of transition metal sulfide nanoparticles embedded in carbon matrices for reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 16849-16855.	10.3	46
17	Surface coating of LiMn ₂ O ₄ cathodes with garnet electrolytes for improving cycling stability of solid lithium batteries. Journal of Materials Chemistry A, 2020, 8, 4252-4256.	10.3	40
18	The Role of Charge Reactions in Cyclability of Lithium–Oxygen Batteries. Advanced Energy Materials, 2013, 3, 1413-1416.	19.5	39

Yingbin Tan

#	Article	IF	CITATIONS
19	Construction of NiCo ₂ O ₄ @graphene nanorods by tuning the compositional chemistry of metal–organic frameworks with enhanced lithium storage properties. Journal of Materials Chemistry A, 2018, 6, 19604-19610.	10.3	38
20	Job-sharing cathode design for Li–O ₂ batteries with high energy efficiency enabled by in situ ionic liquid bonding to cover carbon surface defects. Journal of Materials Chemistry A, 2016, 4, 241-249.	10.3	31
21	Formation of Nanosized Defective Lithium Peroxides through Si-Coated Carbon Nanotube Cathodes for High Energy Efficiency Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 18754-18760.	8.0	27
22	Immobilization of sulfur by constructing three-dimensional nitrogen rich carbons for long life lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 8360-8366.	10.3	26
23	Chemical interface engineering of solid garnet batteries for long-life and high-rate performance. Chemical Engineering Journal, 2021, 424, 130423.	12.7	25
24	Controllable synthesis of hollow copper oxide encapsulated into N-doped carbon nanosheets as high-stability anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 24139-24144.	10.3	22
25	Achieving highly stable Li–O ₂ battery operation by designing a carbon nitride-based cathode towards a stable reaction interface. Journal of Materials Chemistry A, 2017, 5, 18207-18213.	10.3	14