Yoshio Yaoita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1949269/publications.pdf

Version: 2024-02-01

394421 454955 31 924 19 30 citations h-index g-index papers 31 31 31 702 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Sperm MMPâ€2 is indispensable for fast electrical block to polyspermy at fertilization in Xenopus tropicalis. Molecular Reproduction and Development, 2021, 88, 744-757.	2.0	2
2	Tail Resorption During Metamorphosis in Xenopus Tadpoles. Frontiers in Endocrinology, 2019, 10, 143.	3.5	36
3	Thyroid Hormone Receptor α– and β–Knockout Xenopus tropicalis Tadpoles Reveal Subtype-Specific Roles During Development. Endocrinology, 2018, 159, 733-743.	2.8	42
4	Developmental gene expression patterns in the brain and liver of <i>Xenopus tropicalis</i> during metamorphosis climax. Genes To Cells, 2018, 23, 998-1008.	1.2	6
5	Homeotic transformation of tails into limbs in anurans. Development Growth and Differentiation, 2018, 60, 365-376.	1.5	6
6	Mechanisms of tail resorption during anuran metamorphosis. Biomolecular Concepts, 2017, 8, 179-183.	2.2	14
7	An Inhibitor of Thyroid Hormone Synthesis Protects Tail Skin Grafts Transplanted to Syngenic Adult Frogs. Zoological Science, 2017, 34, 414-418.	0.7	5
8	Vitamin A induced homeotic hindlimb formation on dorsal and ventral sides of regenerating tissue of amputated tails of Japanese brown frog tadpoles. Development Growth and Differentiation, 2017, 59, 688-700.	1.5	6
9	no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development. Developmental Biology, 2017, 426, 472-486.	2.0	28
10	Generation of Albino Cynops pyrrhogaster by Genomic Editing of the tyrosinase Gene. Zoological Science, 2016, 33, 290.	0.7	3
11	Ouro proteins are not essential to tail regression during <i>Xenopus tropicalis</i> metamorphosis. Genes To Cells, 2016, 21, 275-286.	1.2	15
12	Characterization of myosin <scp>II</scp> regulatory light chain isoforms in <scp>H</scp> e <scp>L</scp> a cells. Cytoskeleton, 2015, 72, 609-620.	2.0	7
13	Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in <i>Xenopus laevis</i> . Biology Open, 2015, 4, 180-185.	1.2	21
14	Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus. Biology Open, 2015, 4, 259-266.	1.2	7
15	Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. Developmental Biology, 2015, 408, 328-344.	2.0	58
16	Targeted Gene Disruption in the Xenopus tropicalis Genome using Designed TALE Nucleases. Zoological Science, 2013, 30, 455-460.	0.7	22
17	Comparison of TALEN scaffolds in Xenopus tropicalis. Biology Open, 2013, 2, 1364-1370.	1.2	28
18	Translational regulation by the 5′-UTR of thyroid hormone receptor α mRNA. Journal of Biochemistry, 2012, 151, 519-531.	1.7	13

#	Article	IF	CITATIONS
19	Generation of albino <i> <scp>X</scp> enopus tropicalis</i> using zincâ€finger nucleases. Development Growth and Differentiation, 2012, 54, 777-784.	1.5	46
20	Regulation of thyroid hormone sensitivity by differential expression of the thyroid hormone receptor during <i><scp>X</scp>enopus</i> metamorphosis. Genes To Cells, 2012, 17, 645-659.	1.2	30
21	Xenopus tropicalis: An Ideal Experimental Animal in Amphibia. Experimental Animals, 2010, 59, 395-405.	1.1	58
22	Tumor Necrosis Factor-α Attenuates Thyroid Hormone-Induced Apoptosis in Vascular Endothelial Cell Line XLgoo Established from Xenopus Tadpole Tails. Endocrinology, 2008, 149, 3379-3389.	2.8	17
23	Expression profiles of the duplicated matrix metalloproteinaseâ€9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells during <i>Xenopus laevis</i> metamorphosis. Developmental Dynamics, 2007, 236, 2338-2345.	1.8	23
24	Expression of matrix metalloproteinase genes in regressing or remodeling organs during amphibian metamorphosis. Development Growth and Differentiation, 2007, 49, 131-143.	1.5	39
25	One of the duplicated matrix metalloproteinase-9 genes is expressed in regressing tail during anuran metamorphosis. Development Growth and Differentiation, 2006, 48, 223-241.	1.5	36
26	Programmed cell death during amphibian metamorphosis. Seminars in Cell and Developmental Biology, 2005, 16, 271-280.	5.0	57
27	The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity. Genes To Cells, 2004, 9, 1249-1264.	1.2	21
28	Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis. Developmental Dynamics, 2003, 227, 246-255.	1.8	90
29	Inhibition of Nuclear Transport of Caspase-7 by Its Prodomain. Biochemical and Biophysical Research Communications, 2002, 291, 79-84.	2.1	19
30	Structure, Expression, and Function of the Xenopus laevis Caspase Family. Journal of Biological Chemistry, 2000, 275, 10484-10491.	3.4	78
31	Induction of Apoptosis and CPP32 Expression by Thyroid Hormone in a Myoblastic Cell Line Derived from Tadpole Tail. Journal of Biological Chemistry, 1997, 272, 5122-5127.	3.4	91