
David Grunwald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1948956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ISO 23494: Biotechnology – Provenance Information Model for Biological Specimen And Data. Lecture Notes in Computer Science, 2021, , 222-225.	1.0	3
2	Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nature Neuroscience, 2021, 24, 1077-1088.	7.1	54
3	REMBI: Recommended Metadata for Biological Images—enabling reuse of microscopy data in biology. Nature Methods, 2021, 18, 1418-1422.	9.0	63
4	Correction to: ISO 23494: Biotechnology – Provenance Information Model for Biological Specimen And Data. Lecture Notes in Computer Science, 2021, , C1-C1.	1.0	0
5	Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model. Nature Methods, 2021, 18, 1427-1440.	9.0	25
6	Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications. Nature Methods, 2021, 18, 1489-1495.	9.0	16
7	Live-Cell Imaging of mRNP–NPC Interactions in Budding Yeast. Methods in Molecular Biology, 2019, 2038, 131-150.	0.4	3
8	An automated Bayesian pipeline for rapid analysis of single-molecule binding data. Nature Communications, 2019, 10, 272.	5.8	26
9	Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region. Journal of Cell Biology, 2019, 218, 1467-1477.	2.3	40
10	Single-Molecule Switching: Fluorescence Polarization Control for On-Off Switching of Single Molecules at Cryogenic Temperatures (Small Methods 9/2018). Small Methods, 2018, 2, 1800044.	4.6	0
11	Deconstructing transport-distribution reconstruction in the nuclear-pore complex. Nature Structural and Molecular Biology, 2018, 25, 1061-1062.	3.6	6
12	Impact of optical aberrations on axial position determination by photometry. Nature Methods, 2018, 15, 989-990.	9.0	13
13	CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nature Methods, 2018, 15, 928-931.	9.0	118
14	Advanced 3D Analysis and Optimization of Singleâ€Molecule FISH in <i>Drosophila</i> Muscle. Small Methods, 2018, 2, 1700324.	4.6	0
15	Fluorescence Polarization Control for On–Off Switching of Single Molecules at Cryogenic Temperatures. Small Methods, 2018, 2, 1700323.	4.6	6
16	Diatrack particle tracking software: Review of applications and performance evaluation. Traffic, 2017, 18, 840-852.	1.3	42
17	Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nature Biotechnology, 2016, 34, 528-530.	9.4	365
18	CRISPR-Cas9 nuclear dynamics and target recognition in living cells. Journal of Cell Biology, 2016, 214, 529-537.	2.3	165

DAVID GRUNWALD

#	Article	IF	CITATIONS
19	Simultaneous measurement of emission color and 3D position of single molecules. Optics Express, 2016, 24, 4996.	1.7	47
20	Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches. Journal of Molecular Biology, 2016, 428, 2091-2119.	2.0	30
21	HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E201-8.	3.3	68
22	Nuclear accessibility of β-actin mRNA is measured by 3D single-molecule real-time tracking. Journal of Cell Biology, 2015, 209, 609-619.	2.3	48
23	In vivo single-particle imaging of nuclear mRNA export in budding yeast demonstrates an essential role for Mex67p. Journal of Cell Biology, 2015, 211, 1121-1130.	2.3	67
24	Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking. Molecular Biology of the Cell, 2015, 26, 4057-4062.	0.9	30
25	A 4D view on mRNA. Oncotarget, 2015, 6, 28515-28516.	0.8	0
26	Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of Gag protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5205-13.	3.3	54
27	Measuring image resolution in optical nanoscopy. Nature Methods, 2013, 10, 557-562.	9.0	650
28	Nuclear Pore Component Nup98 Is a Potential Tumor Suppressor and Regulates Posttranscriptional Expression of Select p53 Target Genes. Molecular Cell, 2012, 48, 799-810.	4.5	57
29	Multiscale dynamics in nucleocytoplasmic transport. Current Opinion in Cell Biology, 2012, 24, 100-106.	2.6	25
30	Nuclear export dynamics of RNA–protein complexes. Nature, 2011, 475, 333-341.	13.7	162
31	A perspective of the dynamic structure of the nucleus explored at the single-molecule level. Chromosome Research, 2011, 19, 117-129.	1.0	6
32	In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature, 2010, 467, 604-607.	13.7	266
33	RNA Processing and Export. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000752-a000752.	2.3	142
34	Calibrating excitation light fluxes for quantitative light microscopy in cell biology. Nature Protocols, 2008, 3, 1809-1814.	5.5	24
35	Probing Intranuclear Environments at the Single-Molecule Level. Biophysical Journal, 2008, 94, 2847-2858.	0.2	85
36	Chapter 27 Cell Biology of mRNA Decay. Methods in Enzymology, 2008, 448, 553-577.	0.4	22

3

DAVID GRUNWALD

#	Article	IF	CITATIONS
37	Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. Journal of Cell Biology, 2008, 183, 77-86.	2.3	86
38	Single-molecule tracking in eukaryotic cell nuclei. Analytical and Bioanalytical Chemistry, 2006, 387, 41-44.	1.9	23
39	Direct Observation of Single Protein Molecules in Aqueous Solution. ChemPhysChem, 2006, 7, 812-815.	1.0	29
40	Intranuclear Binding Kinetics and Mobility of Single Native U1 snRNP Particles in Living Cells. Molecular Biology of the Cell, 2006, 17, 5017-5027.	0.9	34
41	Nuclear transport of single molecules. Journal of Cell Biology, 2005, 168, 233-243.	2.3	230