David Grunwald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1948956/publications.pdf

Version: 2024-02-01

41 papers

3,153 citations

257101 24 h-index 37 g-index

52 all docs 52 docs citations

52 times ranked 4323 citing authors

#	Article	IF	CITATIONS
1	Measuring image resolution in optical nanoscopy. Nature Methods, 2013, 10, 557-562.	9.0	650
2	Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nature Biotechnology, 2016, 34, 528-530.	9.4	365
3	In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature, 2010, 467, 604-607.	13.7	266
4	Nuclear transport of single molecules. Journal of Cell Biology, 2005, 168, 233-243.	2.3	230
5	CRISPR-Cas9 nuclear dynamics and target recognition in living cells. Journal of Cell Biology, 2016, 214, 529-537.	2.3	165
6	Nuclear export dynamics of RNA–protein complexes. Nature, 2011, 475, 333-341.	13.7	162
7	RNA Processing and Export. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000752-a000752.	2.3	142
8	CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nature Methods, 2018, 15, 928-931.	9.0	118
9	Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. Journal of Cell Biology, 2008, 183, 77-86.	2.3	86
10	Probing Intranuclear Environments at the Single-Molecule Level. Biophysical Journal, 2008, 94, 2847-2858.	0.2	85
11	HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E201-8.	3.3	68
12	In vivo single-particle imaging of nuclear mRNA export in budding yeast demonstrates an essential role for Mex67p. Journal of Cell Biology, 2015, 211, 1121-1130.	2.3	67
13	REMBI: Recommended Metadata for Biological Images—enabling reuse of microscopy data in biology. Nature Methods, 2021, 18, 1418-1422.	9.0	63
14	Nuclear Pore Component Nup98 Is a Potential Tumor Suppressor and Regulates Posttranscriptional Expression of Select p53 Target Genes. Molecular Cell, 2012, 48, 799-810.	4.5	57
15	Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of Gag protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5205-13.	3.3	54
16	Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nature Neuroscience, 2021, 24, 1077-1088.	7.1	54
17	Nuclear accessibility of \hat{l}^2 -actin mRNA is measured by 3D single-molecule real-time tracking. Journal of Cell Biology, 2015, 209, 609-619.	2.3	48
18	Simultaneous measurement of emission color and 3D position of single molecules. Optics Express, 2016, 24, 4996.	1.7	47

#	Article	IF	CITATIONS
19	Diatrack particle tracking software: Review of applications and performance evaluation. Traffic, 2017, 18, 840-852.	1.3	42
20	Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region. Journal of Cell Biology, 2019, 218, 1467-1477.	2.3	40
21	Intranuclear Binding Kinetics and Mobility of Single Native U1 snRNP Particles in Living Cells. Molecular Biology of the Cell, 2006, 17, 5017-5027.	0.9	34
22	Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking. Molecular Biology of the Cell, 2015, 26, 4057-4062.	0.9	30
23	Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches. Journal of Molecular Biology, 2016, 428, 2091-2119.	2.0	30
24	Direct Observation of Single Protein Molecules in Aqueous Solution. ChemPhysChem, 2006, 7, 812-815.	1.0	29
25	An automated Bayesian pipeline for rapid analysis of single-molecule binding data. Nature Communications, 2019, 10, 272.	5.8	26
26	Multiscale dynamics in nucleocytoplasmic transport. Current Opinion in Cell Biology, 2012, 24, 100-106.	2.6	25
27	Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model. Nature Methods, 2021, 18, 1427-1440.	9.0	25
28	Calibrating excitation light fluxes for quantitative light microscopy in cell biology. Nature Protocols, 2008, 3, 1809-1814.	5.5	24
29	Single-molecule tracking in eukaryotic cell nuclei. Analytical and Bioanalytical Chemistry, 2006, 387, 41-44.	1.9	23
30	Chapter 27 Cell Biology of mRNA Decay. Methods in Enzymology, 2008, 448, 553-577.	0.4	22
31	Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications. Nature Methods, 2021, 18, 1489-1495.	9.0	16
32	Impact of optical aberrations on axial position determination by photometry. Nature Methods, 2018, 15, 989-990.	9.0	13
33	A perspective of the dynamic structure of the nucleus explored at the single-molecule level. Chromosome Research, 2011, 19, 117-129.	1.0	6
34	Deconstructing transport-distribution reconstruction in the nuclear-pore complex. Nature Structural and Molecular Biology, 2018, 25, 1061-1062.	3.6	6
35	Fluorescence Polarization Control for On–Off Switching of Single Molecules at Cryogenic Temperatures. Small Methods, 2018, 2, 1700323.	4.6	6
36	Live-Cell Imaging of mRNP–NPC Interactions in Budding Yeast. Methods in Molecular Biology, 2019, 2038, 131-150.	0.4	3

3

#	Article	lF	CITATIONS
37	ISO 23494: Biotechnology – Provenance Information Model for Biological Specimen And Data. Lecture Notes in Computer Science, 2021, , 222-225.	1.0	3
38	Single-Molecule Switching: Fluorescence Polarization Control for On-Off Switching of Single Molecules at Cryogenic Temperatures (Small Methods 9/2018). Small Methods, 2018, 2, 1800044.	4.6	0
39	Advanced 3D Analysis and Optimization of Singleâ€Molecule FISH in <i>Drosophila</i> Muscle. Small Methods, 2018, 2, 1700324.	4.6	O
40	Correction to: ISO 23494: Biotechnology – Provenance Information Model for Biological Specimen And Data. Lecture Notes in Computer Science, 2021, , C1-C1.	1.0	0
41	A 4D view on mRNA. Oncotarget, 2015, 6, 28515-28516.	0.8	0