
Guy Trambly de LaissardiÃ"re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1947982/publications.pdf

Version: 2024-02-01

r

#	Article	IF	CITATIONS
1	Heterostrain Determines Flat Bands in Magic-Angle Twisted Graphene Layers. Physical Review Letters, 2021, 127, 126405.	2.9	23
2	Magnetism of magic-angle twisted bilayer graphene. SciPost Physics, 2021, 11, .	1.5	13
3	Electronic transport properties and quantum localization effects monitored by selective functionalization in Bernal bilayer graphene. Physical Review B, 2021, 104, .	1.1	1
4	Quantum localization and electronic transport in covalently functionalized carbon nanotubes. Journal of Physics Condensed Matter, 2020, 32, 115301.	0.7	2
5	Spin-caloritronic transport in hexagonal graphene nanoflakes. Physical Review B, 2020, 102, .	1.1	12
6	Electronic localization in twisted bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS</mml:mi> <mml:mn>2 with small rotation angle. Physical Review B, 2020, 102, .</mml:mn></mml:msub></mml:math 	:m n.ı <td>nl:ເໝ_ືອນປ></td>	nl:ເໝ _ື ອນປ>
7	Modeling of Electronic Mobilities in Halide Perovskites: Adiabatic Quantum Localization Scenario. Physical Review Letters, 2020, 124, 196601.	2.9	27
8	Electronic structure and quantum transport in twisted bilayer graphene with resonant scatterers. Physical Review B, 2020, 101, .	1.1	9
9	Two-Dimensional Electronic Transport in Rubrene: The Impact of Inter-Chain Coupling. Entropy, 2019, 21, 233.	1.1	2
10	Electronic Spectrum of Twisted Graphene Layers under Heterostrain. Physical Review Letters, 2018, 120, 156405.	2.9	118
11	Mobility gap and quantum transport in a functionalized graphene bilayer. Journal of Physics Condensed Matter, 2018, 30, 195701.	0.7	5
12	Graphene on TaC: Air tight protection of a superconducting surface. Carbon, 2018, 140, 592-595.	5.4	3
13	Numerical analysis of electronic conductivity in graphene with resonant adsorbates: comparison of monolayer and Bernal bilayer. European Physical Journal B, 2017, 90, 1.	0.6	8
14	A map of high-mobility molecular semiconductors. Nature Materials, 2017, 16, 998-1002.	13.3	182
15	Sub-diffusive electronic states in octagonal tiling. Journal of Physics: Conference Series, 2017, 809, 012020.	0.3	4
16	Electronic properties of asymmetrically doped twisted graphene bilayers. Physical Review B, 2016, 93, .	1.1	18
17	Comprehensive analysis of chemokine-induced cAMP-inhibitory responses using a real-time luminescent biosensor. Cellular Signalling, 2016, 28, 120-129.	1.7	9
18	Van Hove singularities in doped twisted graphene bilayers studied by scanning tunneling spectroscopy. Physical Review B, 2015, 91, .	1.1	26

#	Article	IF	CITATIONS
19	Electronic Structure and Transport in Approximants of the Penrose Tiling. Acta Physica Polonica A, 2014, 126, 617-620.	0.2	4
20	Conductivity of graphene with resonant adsorbates: beyond the nearest neighbor hopping model. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 015007.	0.7	4
21	Anomalous electronic transport in quasicrystals and related complex metallic alloys. Comptes Rendus Physique, 2014, 15, 70-81.	0.3	10
22	Conductivity of Graphene with Resonant and Nonresonant Adsorbates. Physical Review Letters, 2013, 111, 146601.	2.9	63
23	Publisher's Note: Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis [Phys. Rev. Lett. 109 , 196802 (2012)]. Physical Review Letters, 2012, 109, .	2.9	7
24	Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis. Physical Review Letters, 2012, 109, 196802.	2.9	345
25	Numerical studies of confined states in rotated bilayers of graphene. Physical Review B, 2012, 86, .	1.1	241
26	ELECTRONIC TRANSPORT IN GRAPHENE: QUANTUM EFFECTS AND ROLE OF LOCAL DEFECTS. Modern Physics Letters B, 2011, 25, 1019-1028.	1.0	22
27	Breakdown of semi-classical conduction theory in approximants of the octagonal tiling. Philosophical Magazine, 2011, 91, 2778-2786.	0.7	9
28	Localization of Dirac Electrons in Rotated Graphene Bilayers. Nano Letters, 2010, 10, 804-808.	4.5	616
29	Spiky density of states in large complex Al–Mn phases. Zeitschrift Fur Kristallographie - Crystalline Materials, 2009, 224, 123-126.	0.4	11
30	Electronic transport in AlMn(Si) and AlCuFe quasicrystals: Breakdown of the semiclassical model. Philosophical Magazine, 2008, 88, 2131-2144.	0.7	8
31	Chapter 7 Quantum transport in quasicrystals and complex metallic alloys. Handbook of Metal Physics, 2008, 3, 209-265.	0.0	9
32	AB-INITIO QUANTUM DIFFUSION IN QUASICRYSTALS. , 2006, , 535-546.		0
33	Numerical evidence of backscattering in approximants of quasicrystals. Philosophical Magazine, 2006, 86, 663-669.	0.7	3
34	Quantum Transport of Slow Charge Carriers in Quasicrystals and Correlated Systems. Physical Review Letters, 2006, 97, 026601.	2.9	55
35	Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides. Progress in Materials Science, 2005, 50, 679-788.	16.0	173
36	Effective medium-range Mn–Mn pair interaction induces pseudogap in the density of states of Al(Si)–Mn approximants. Journal of Non-Crystalline Solids, 2004, 334-335, 347-351.	1.5	10

#	Article	IF	CITATIONS
37	First-principle predictions of magnetic properties for a complex and strongly related to quasicrystalline phase: μ-Al4Mn. Journal of Magnetism and Magnetic Materials, 2003, 262, 496-501.	1.0	6
38	Interplay between electronic structure and medium-range atomic order in hexagonalβâ^'Al9Mn3Siandφâ^'Al10Mn3crystals. Physical Review B, 2003, 68, .	1.1	9
39	Magnetic Properties of Quasicrystals and Approximants. Springer Series in Materials Science, 2002, , 487-504.	0.4	0
40	Origin of magnetism in Al–Mn and Al–Pd–Mn quasicrystals, related crystals and liquids. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1029-1031.	1.0	3
41	Origin of Magnetism in Al-Pd-Mn and Al-Mn Quasicrystals and Approximants. Materials Research Society Symposia Proceedings, 2000, 643, 1421.	0.1	0
42	Conditions on the occurrence of magnetic moments in quasicrystals and related phases. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 294-296, 621-624.	2.6	14
43	Magnetism in Al(Si)-Mn Quasicrystals and Related Phases. Physical Review Letters, 2000, 85, 3273-3276.	2.9	33
44	MAGNETISM OF QUASICRYSTALS. , 2000, , .		0
45	Magnetic properties of AlPdMn approximant phases. Journal of Physics Condensed Matter, 1999, 11, 10419-10435.	0.7	21
46	Origin of magnetism in crystalline and quasicrystalline AlMn and AlPdMn phases. Physical Review B, 1998, 58, R8865-R8868.	1.1	36
47	The electronic structure of orthorhombic. Journal of Physics Condensed Matter, 1997, 9, 7999-8010.	0.7	9
48	Electronic structure of hexagonal. Journal of Physics Condensed Matter, 1997, 9, 9585-9596.	0.7	11
49	Clusters and localization of electrons in quasicrystals. Physical Review B, 1997, 55, 2890-2893.	1.1	81
50	Electronic transport properties of quasicrystals. Journal of Mathematical Physics, 1997, 38, 1794-1822.	0.5	92
51	Electronic confinement by clusters in quasicrystals and approximants. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 986-989.	2.6	25
52	Experimental and theoretical electronic distributions in Al-Cu-based alloys. Physical Review B, 1995, 51, 14035-14047.	1.1	26
53	Electronic structure and hybridization effects in Hume-Rothery alloys containing transition elements. Physical Review B, 1995, 52, 7920-7933.	1.1	161
54	Electronic Structure and Electron Transport in Quasicrystals. Materials Science Forum, 1994, 150-151, 387-394.	0.3	29

#	Article	IF	CITATIONS
55	Al 3P Partial Densities of States in Crystals and Quasicrystals versus Topological Arrangement. Materials Science Forum, 1994, 150-151, 395-402.	0.3	1
56	Electronic Structure in Approximants of Stable Quasicrystals. Materials Science Forum, 1994, 150-151, 417-426.	0.3	1
57	Electronic structure and conductivity in a model approximant of the icosahedral quasicrystal Al-Cu-Fe. Physical Review B, 1994, 50, 5999-6005.	1.1	98
58	Electronic structure and transport in a model approximant of the decagonal quasicrystal Al-Cu-Co. Physical Review B, 1994, 50, 9843-9850.	1.1	83
59	Electronic structure and transport properties in quasi-crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 118-121.	2.6	11
60	Electronic structure in a model of decagonal AlCuCo approximant. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 722-725.	2.6	14
61	Theoretical and experimental electronic distributions in AL6Mn. Journal of Physics Condensed Matter, 1993, 5, 3339-3350.	0.7	22
62	Electronic properties and the role of d states in stable quasicrystals. Journal of Non-Crystalline Solids, 1993, 153-154, 412-415.	1.5	25
63	Anderson model for Hume-Rothery alloys containing transition metals. Journal of Non-Crystalline Solids, 1993, 153-154, 430-433.	1.5	6
64	ELECTRONIC PROPERTIES OF STABLE QUASICRYSTALS CONTAINING TRANSITION ELEMENTS. International Journal of Modern Physics B, 1993, 07, 318-321.	1.0	1
65	Electronic Structure of Transition Atoms in Quasi-Crystals and Hume-Rothery Alloys. Europhysics Letters, 1993, 21, 25-30.	0.7	63
66	Band structure effects of transport properties in icosahedral quasicrystals. Physical Review Letters, 1993, 71, 4166-4169.	2.9	126
67	Electronic structure and hybridization effects in the compounds Al2Ru and Ga2Ru. Solid State Communications, 1992, 82, 329-334.	0.9	70