Amy Hauck Newman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1947846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist. Science, 2010, 330, 1091-1095.	12.6	1,034
2	The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nature Neuroscience, 2008, 11, 780-789.	14.8	304
3	Current perspectives on selective dopamine D ₃ receptor antagonists as pharmacotherapeutics for addictions and related disorders. Annals of the New York Academy of Sciences, 2010, 1187, 4-34.	3.8	250
4	Dopamine D3 Receptor Partial Agonists and Antagonists as Potential Drug Abuse Therapeutic Agents. Journal of Medicinal Chemistry, 2005, 48, 3663-3679.	6.4	180
5	Tyr-95 and Ile-172 in Transmembrane Segments 1 and 3 of Human Serotonin Transporters Interact to Establish High Affinity Recognition of Antidepressants. Journal of Biological Chemistry, 2006, 281, 2012-2023.	3.4	158
6	Molecular Determinants of Selectivity and Efficacy at the Dopamine D3 Receptor. Journal of Medicinal Chemistry, 2012, 55, 6689-6699.	6.4	153
7	Missense dopamine transporter mutations associate with adult parkinsonism and ADHD. Journal of Clinical Investigation, 2014, 124, 3107-3120.	8.2	129
8	Relationship between Conformational Changes in the Dopamine Transporter and Cocaine-Like Subjective Effects of Uptake Inhibitors. Molecular Pharmacology, 2008, 73, 813-823.	2.3	125
9	The N Terminus of Monoamine Transporters Is a Lever Required for the Action of Amphetamines. Journal of Biological Chemistry, 2010, 285, 10924-10938.	3.4	123
10	Dopamine Agonist-Induced Yawning in Rats: A Dopamine D3 Receptor-Mediated Behavior. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 310-319.	2.5	122
11	R-Modafinil (Armodafinil): A Unique Dopamine Uptake Inhibitor and Potential Medication for Psychostimulant Abuse. Biological Psychiatry, 2012, 72, 405-413.	1.3	121
12	Novel Heterocyclic Trans Olefin Analogues of N-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl}arylcarboxamides as Selective Probes with High Affinity for the Dopamine D3 Receptor. Journal of Medicinal Chemistry, 2005, 48, 839-848.	6.4	119
13	Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists. Psychopharmacology, 2007, 193, 159-170.	3.1	119
14	Dissociable Control of Impulsivity in Rats by Dopamine D2/3 Receptors in the Core and Shell Subregions of the Nucleus Accumbens. Neuropsychopharmacology, 2010, 35, 560-569.	5.4	118
15	The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology, 2013, 229, 415-434.	3.1	117
16	Medication discovery for addiction: Translating the dopamine D3 receptor hypothesis. Biochemical Pharmacology, 2012, 84, 882-890.	4.4	116
17	Novel 3.alpha(Diphenylmethoxy)tropane Analogs: Potent Dopamine Uptake Inhibitors without Cocaine-like Behavioral Profiles. Journal of Medicinal Chemistry, 1994, 37, 2258-2261.	6.4	113
18	Probes for the dopamine transporter: New leads toward a cocaine-abuse therapeutic?A focus on analogues of benztropine and rimcazole. Medicinal Research Reviews, 2002, 22, 429-464.	10.5	110

#	Article	IF	CITATIONS
19	Identification of a Dopamine Transporter Ligand That Blocks the Stimulant Effects of Cocaine. Journal of Neuroscience, 2005, 25, 1889-1893.	3.6	106
20	Novel 4'-Substituted and 4',4''-Disubstituted 3.alpha(Diphenylmethoxy)tropane Analogs as Potent and Selective Dopamine Uptake Inhibitors. Journal of Medicinal Chemistry, 1995, 38, 3933-3940.	6.4	104
21	Novel N-Substituted 3α-[Bis(4â€~-fluorophenyl)methoxy]tropane Analogues: Selective Ligands for the Dopamine Transporter. Journal of Medicinal Chemistry, 1997, 40, 4329-4339.	6.4	104
22	Visualization of Dopamine Transporter Trafficking in Live Neurons by Use of Fluorescent Cocaine Analogs. Journal of Neuroscience, 2009, 29, 6794-6808.	3.6	101
23	What Can Crystal Structures of Aminergic Receptors Tell Us about Designing Subtype-Selective Ligands?. Pharmacological Reviews, 2015, 67, 198-213.	16.0	99
24	Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. Journal of Medicinal Chemistry, 2015, 58, 5361-5380.	6.4	86
25	Heterocyclic Analogues of <i>N</i> -(4-(4-(2,3-Dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with Functionalized Linking Chains as Novel Dopamine D3 Receptor Ligands:  Potential Substance Abuse Therapeutic Agents. Journal of Medicinal Chemistry, 2007, 50, 4135-4146.	6.4	85
26	Assessment of Reinforcing Effects of Benztropine Analogs and Their Effects on Cocaine Self-Administration in Rats: Comparisons with Monoamine Uptake Inhibitors. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 677-686.	2.5	85
27	Design and Synthesis of [(2,3-Dichlorophenyl)piperazin-1-yl]alkylfluorenylcarboxamides as Novel Ligands Selective for the Dopamine D3Receptor Subtype. Journal of Medicinal Chemistry, 2001, 44, 3175-3186.	6.4	84
28	<i>N</i> -(4-(4-(2,3-Dichloro- or 2-methoxyphenyl)piperazin-1-yl)butyl)heterobiarylcarboxamides with Functionalized Linking Chains as High Affinity and Enantioselective D3 Receptor Antagonists. Journal of Medicinal Chemistry, 2009, 52, 2559-2570.	6.4	83
29	Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochemical Pharmacology, 2008, 75, 2-16.	4.4	77
30	Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron, 2019, 102, 786-800.e5.	8.1	74
31	Highly Selective Dopamine D ₃ Receptor (D ₃ R) Antagonists and Partial Agonists Based on Eticlopride and the D ₃ R Crystal Structure: New Leads for Opioid Dependence Treatment. Journal of Medicinal Chemistry, 2016, 59, 7634-7650.	6.4	73
32	Effects of N-Substituted Analogs of Benztropine: Diminished Cocaine-Like Effects in Dopamine Transporter Ligands. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 650-660.	2.5	71
33	Decreases in Cocaine Self-Administration with Dual Inhibition of the Dopamine Transporter and If Receptors. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 662-677.	2.5	71
34	2D QSAR Modeling and Preliminary Database Searching for Dopamine Transporter Inhibitors Using Genetic Algorithm Variable Selection of Molconn Z Descriptors. Journal of Medicinal Chemistry, 2000, 43, 4151-4159.	6.4	70
35	Effects of Two Novel D3-Selective Compounds, NGB 2904 [N-(4-(4-(2,3-Dichlorophenyl)piperazin-1-yl)butyl)-9H-fluorene-2-carboxamide] and CJB 090 [N-(4-(4-(2,3-Dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide], on the Reinforcing and Discriminative Stimulus Effects of Cocaine in Rhesus Monkeys. Journal of Pharmacology and	2.5	65
36	Experimental Therapeutics, 2007, 321, 573-582. <i>N</i> -(3-Fluoro-4-(4-(2-methoxy or 2,3-dichlorophenyl)piperazine-1-yl)butyl)arylcarboxamides as Selective Dopamine D3 Receptor Ligands: Critical Role of the Carboxamide Linker for D3 Receptor Selectivity. Journal of Medicinal Chemistry, 2011, 54, 3581-3594.	6.4	64

#	Article	IF	CITATIONS
37	Probing Binding Pocket of Serotonin Transporter by Single Molecular Force Spectroscopy on Living Cells. Journal of Biological Chemistry, 2012, 287, 105-113.	3.4	63
38	Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D ₂ -Like Receptor Agonist. Molecular Pharmacology, 2016, 89, 457-466.	2.3	62
39	Discovery of Drugs to Treat Cocaine Dependence: Behavioral and Neurochemical Effects of Atypical Dopamine Transport Inhibitors. Advances in Pharmacology, 2009, 57, 253-289.	2.0	61
40	Single Molecule Analysis Reveals Coexistence of Stable Serotonin Transporter Monomers and Oligomers in the Live Cell Plasma Membrane. Journal of Biological Chemistry, 2014, 289, 4387-4394.	3.4	61
41	Dopamine D3R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology, 2019, 44, 1415-1424.	5.4	61
42	Postendocytic Sorting of Constitutively Internalized Dopamine Transporter in Cell Lines and Dopaminergic Neurons. Journal of Biological Chemistry, 2010, 285, 27289-27301.	3.4	60
43	SARs at the Monoamine Transporters for a Novel Series of Modafinil Analogues. ACS Medicinal Chemistry Letters, 2011, 2, 48-52.	2.8	60
44	Further studies of the reinforcing effects of benztropine analogs in rhesus monkeys. Psychopharmacology, 2001, 154, 375-382.	3.1	58
45	N-{4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl, butenyl and butynyl}arylcarboxamides as novel dopamine D3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2179-2183.	2.2	58
46	A Single Glycine in Extracellular Loop 1 Is the Critical Determinant for Pharmacological Specificity of Dopamine D2 and D3 Receptors. Molecular Pharmacology, 2013, 84, 854-864.	2.3	58
47	Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 10676-10691.	6.4	58
48	The binding sites for benztropines and dopamine in the dopamine transporter overlap. Neuropharmacology, 2011, 60, 182-190.	4.1	57
49	Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters. Molecular Pharmacology, 2016, 89, 165-175.	2.3	53
50	Targeting hypersensitive corticostriatal terminals in restless legs syndrome. Annals of Neurology, 2017, 82, 951-960.	5.3	52
51	Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens. Neuron, 2018, 98, 575-587.e4.	8.1	52
52	The highly selective dopamine D R antagonist, R-VK4-40 attenuates oxycodone reward and augments analgesia in rodents. Neuropharmacology, 2019, 158, 107597.	4.1	51
53	Dopamine D3 and D2 Receptor Mechanisms in the Abuse-Related Behavioral Effects of Cocaine: Studies with Preferential Antagonists in Squirrel Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 556-565.	2.5	50
54	Elucidation of Structural Elements for Selectivity across Monoamine Transporters: Novel 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues. Journal of Medicinal Chemistry, 2014, 57, 1000-1013.	6.4	50

#	Article	IF	CITATIONS
55	Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane. Nature Communications, 2016, 7, 10423.	12.8	50
56	The novel dopamine D3 receptor antagonists/partial agonists CAB2-015 and BAK4-54 inhibit oxycodone-taking and oxycodone-seeking behavior in rats. Neuropharmacology, 2017, 126, 190-199.	4.1	50
57	Pharmacological profiling of sigma 1 receptor ligands by novel receptor homomer assays. Neuropharmacology, 2018, 133, 264-275.	4.1	50
58	Toward Understanding the Structural Basis of Partial Agonism at the Dopamine D ₃ Receptor. Journal of Medicinal Chemistry, 2017, 60, 580-593.	6.4	49
59	2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. Journal of Medicinal Chemistry, 2020, 63, 1779-1797.	6.4	49
60	Combinations of Cocaine with Other Dopamine Uptake Inhibitors: Assessment of Additivity. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 802-809.	2.5	47
61	Tranylcypromine Substituted <i>cis</i> -Hydroxycyclobutylnaphthamides as Potent and Selective Dopamine D ₃ Receptor Antagonists. Journal of Medicinal Chemistry, 2014, 57, 4962-4968.	6.4	47
62	Structureâ~ Activity Relationships at the Monoamine Transporters and σ Receptors for a Novel Series of 9-[3-(cis-3,5-Dimethyl-1-piperazinyl)-propyl]carbazole (Rimcazole) Analogues. Journal of Medicinal Chemistry, 1999, 42, 4446-4455.	6.4	46
63	PRECLINICAL STUDY: FULL ARTICLE: The dopamine D3 receptor partial agonist CJB090 and antagonist PG01037 decrease progressive ratio responding for methamphetamine in rats with extendedâ€access. Addiction Biology, 2010, 15, 312-323.	2.6	46
64	Relationship between in Vivo Occupancy at the Dopamine Transporter and Behavioral Effects of Cocaine, GBR 12909 [1-{2-[Bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine], and Benztropine Analogs. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 397-404.	2.5	45
65	High Affinity Dopamine D ₃ Receptor (D ₃ R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D ₃ R Knockout Mice. Journal of Medicinal Chemistry, 2015, 58, 6195-6213.	6.4	45
66	The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nature Communications, 2021, 12, 5063.	12.8	45
67	The dopamine D3 receptor antagonist NGB 2904 increases spontaneous and amphetamine-stimulated locomotion. Pharmacology Biochemistry and Behavior, 2007, 86, 718-726.	2.9	44
68	Synthesis and Pharmacological Characterization of Novel <i>trans</i> -Cyclopropylmethyl-Linked Bivalent Ligands That Exhibit Selectivity and Allosteric Pharmacology at the Dopamine D ₃ Receptor (D ₃ R). Journal of Medicinal Chemistry, 2017, 60, 1478-1494.	6.4	44
69	Progress in agonist therapy for substance use disorders: Lessons learned from methadone and buprenorphine. Neuropharmacology, 2019, 158, 107609.	4.1	44
70	Rhodamine-Labeled 2β-Carbomethoxy-3β-(3,4-dichlorophenyl)tropane Analogues as High-Affinity Fluorescent Probes for the Dopamine Transporter. Journal of Medicinal Chemistry, 2005, 48, 7513-7516.	6.4	43
71	Novel Bivalent Ligands Based on the Sumanirole Pharmacophore Reveal Dopamine D ₂ Receptor (D ₂ R) Biased Agonism. Journal of Medicinal Chemistry, 2017, 60, 2890-2907.	6.4	43
72	Novel and Potent Dopamine D ₂ Receptor Go-Protein Biased Agonists. ACS Pharmacology and Translational Science, 2019, 2, 52-65.	4.9	43

#	Article	IF	CITATIONS
73	Preference for Distinct Functional Conformations of the Dopamine Transporter Alters the Relationship between Subjective Effects of Cocaine and Stimulation of Mesolimbic Dopamine. Biological Psychiatry, 2014, 76, 802-809.	1.3	42
74	Proerectile Effects of Dopamine D ₂ -Like Agonists Are Mediated by the D ₃ Receptor in Rats and Mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 210-217.	2.5	41
75	Beyond Small-Molecule SAR. Advances in Pharmacology, 2014, 69, 267-300.	2.0	41
76	Opioid–galanin receptor heteromers mediate the dopaminergic effects of opioids. Journal of Clinical Investigation, 2019, 129, 2730-2744.	8.2	41
77	Dopamine transporter binding without cocaine-like behavioral effects: synthesis and evaluation of benztropine analogs alone and in combination with cocaine in rodents. Psychopharmacology, 2001, 154, 362-374.	3.1	37
78	Effects of buspirone and the dopamine D3 receptor compound PG619 on cocaine and methamphetamine self-administration in rhesus monkeys using a food-drug choice paradigm. Psychopharmacology, 2015, 232, 1279-1289.	3.1	37
79	Place Conditioning and Locomotor Effects of N-Substituted, 4′,4′′-Difluorobenztropine Analogs in Rats. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1223-1230.	2.5	36
80	New Drugs, Old Targets: Tweaking the Dopamine System to Treat Psychostimulant Use Disorders. Annual Review of Pharmacology and Toxicology, 2021, 61, 609-628.	9.4	36
81	Translating the atypical dopamine uptake inhibitor hypothesis toward therapeutics for treatment of psychostimulant use disorders. Neuropsychopharmacology, 2019, 44, 1435-1444.	5.4	35
82	Novel Analogues of (<i>R</i>)-5-(Methylamino)-5,6-dihydro-4 <i>H</i> -imidazo[4,5,1- <i>ij</i>]quinolin-2(1 <i>H</i>)-one (Sumanirole) Provide Clues to Dopamine D ₂ /D ₃ Receptor Agonist Selectivity. Journal of Medicinal Chemistry, 2016, 59, 2973-2988.	6.4	33
83	Biased G Protein-Independent Signaling of Dopamine D1-D3 Receptor Heteromers in the Nucleus Accumbens. Molecular Neurobiology, 2019, 56, 6756-6769.	4.0	33
84	The unique psychostimulant profile of (±)â€modafinil: investigation of behavioral and neurochemical effects in mice. European Journal of Neuroscience, 2017, 45, 167-174.	2.6	32
85	Dopamine D3 Receptor Antagonism Reverses the Escalation of Oxycodone Self-administration and Decreases Withdrawal-Induced Hyperalgesia and Irritability-Like Behavior in Oxycodone-Dependent Heterogeneous Stock Rats. Frontiers in Behavioral Neuroscience, 2019, 13, 292.	2.0	32
86	N-Substituted Benztropine Analogs: Selective Dopamine Transporter Ligands with a Fast Onset of Action and Minimal Cocaine-Like Behavioral Effects. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 575-585.	2.5	31
87	Cocaine self-administration in dopamine Dâ, <i>f</i> receptor knockout mice Experimental and Clinical Psychopharmacology, 2012, 20, 352-363.	1.8	30
88	Investigation of Novel Primary and Secondary Pharmacophores and 3-Substitution in the Linking Chain of a Series of Highly Selective and Bitopic Dopamine D ₃ Receptor Antagonists and Partial Agonists. Journal of Medicinal Chemistry, 2019, 62, 9061-9077.	6.4	30
89	Using click chemistry toward novel 1,2,3-triazole-linked dopamine D3 receptor ligands. Bioorganic and Medicinal Chemistry, 2015, 23, 4000-4012.	3.0	29
90	Nanopharmacological Force Sensing to Reveal Allosteric Coupling in Transporter Binding Sites. Angewandte Chemie - International Edition, 2016, 55, 1719-1722.	13.8	29

AMY HAUCK NEWMAN

#	Article	IF	CITATIONS
91	The Novel Modafinil Analog, JJC8-016, as a Potential Cocaine Abuse Pharmacotherapeutic. Neuropsychopharmacology, 2017, 42, 1871-1883.	5.4	29
92	2-Isoxazol-3-Phenyltropane Derivatives of Cocaine: Molecular and Atypical System Effects at the Dopamine Transporter. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 297-309.	2.5	28
93	Dual Probes for the Dopamine Transporter and σ1 Receptors:  Novel Piperazinyl Alkyl-bis(4â€~-fluorophenyl)amine Analogues as Potential Cocaine-Abuse Therapeutic Agents. Journal of Medicinal Chemistry, 2003, 46, 2589-2598.	6.4	27
94	Effects of (<i>R</i>)-Modafinil and Modafinil Analogues on Dopamine Dynamics Assessed by Voltammetry and Microdialysis in the Mouse Nucleus Accumbens Shell. ACS Chemical Neuroscience, 2019, 10, 2012-2021.	3.5	27
95	Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: Rationale, progress, and challenges. Neuroscience and Biobehavioral Reviews, 2020, 114, 38-52.	6.1	27
96	Structureâ^'Activity Relationship Comparison of (S)-2β-Substituted 3α-(Bis[4-fluorophenyl]methoxy)tropanes and (R)-2β-Substituted 3β-(3,4-Dichlorophenyl)tropanes at the Dopamine Transporter. Journal of Medicinal Chemistry, 2003, 46, 2908-2916.	6.4	26
97	The Significance of Chirality in Drug Design and Synthesis of Bitopic Ligands as D ₃ Receptor (D ₃ R) Selective Agonists. Journal of Medicinal Chemistry, 2019, 62, 6287-6314.	6.4	26
98	How to rescue misfolded SERT, DAT and NET: targeting conformational intermediates with atypical inhibitors and partial releasers. Biochemical Society Transactions, 2019, 47, 861-874.	3.4	25
99	Synthesis and evaluation of 3-substituted 17-methylmorphinan analogs as potential anticonvulsant agents. Journal of Medicinal Chemistry, 1992, 35, 4135-4142.	6.4	24
100	Isothiocyanate Derivatives of 9-[3-(cis-3,5-Dimethyl-1-piperazinyl)propyl]- carbazole (Rimcazole):Â Irreversible Ligands for the Dopamine Transporter. Journal of Medicinal Chemistry, 1997, 40, 4340-4346.	6.4	24
101	The dopamine D3 receptor partial agonist CJB 090 inhibits the discriminative stimulus but not the reinforcing or priming effects of cocaine in squirrel monkeys. Psychopharmacology, 2009, 206, 73-84.	3.1	24
102	Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site. Journal of Biological Chemistry, 2014, 289, 29712-29727.	3.4	24
103	Selective D2 and D3 receptor antagonists oppositely modulate cocaine responses in mice via distinct postsynaptic mechanisms in nucleus accumbens. Neuropsychopharmacology, 2019, 44, 1445-1455.	5.4	24
104	Newly Developed Dopamine D ₃ Receptor Antagonists, <i>R</i> -VK4-40 and <i>R</i> -VK4-116, Do Not Potentiate Cardiovascular Effects of Cocaine or Oxycodone in Rats. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 602-614.	2.5	24
105	Novel 1-Phenylcycloalkanecarboxylic Acid Derivatives Are Potent and Selective .sigma.1 Ligands. Journal of Medicinal Chemistry, 1994, 37, 2285-2291.	6.4	23
106	Novel Benztropine [3a-(Diphenylmethoxy)tropane] Analogs as Probes for the Dopamine Transporter. Current Medicinal Chemistry, 1998, 5, 305-319.	2.4	22
107	Characterization of the Transport, Metabolism, and Pharmacokinetics of the Dopamine D3 Receptor-Selective Fluorenyl- and 2-Pyridylphenyl Amides Developed for Treatment of Psychostimulant Abuse. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 854-864.	2.5	21
108	Differential effects of the dopamine D3 receptor antagonist PG01037 on cocaine and methamphetamine self-administration in rhesus monkeys. Neuropharmacology, 2015, 92, 34-43.	4.1	21

AMY HAUCK NEWMAN

#	Article	IF	CITATIONS
109	Atypical dopamine transporter inhibitors attenuate compulsive-like methamphetamine self-administration in rats. Neuropharmacology, 2018, 131, 96-103.	4.1	21
110	Computation-guided analysis of paroxetine binding to hSERT reveals functionally important structural elements and dynamics. Neuropharmacology, 2019, 161, 107411.	4.1	21
111	Dopamine D3 receptor selective ligands with varying intrinsic efficacies at adenylyl cyclase inhibition and mitogenic signaling pathways. Synapse, 2010, 64, 251-266.	1.2	20
112	Evaluation of the D3 dopamine receptor selective agonist/partial agonist PG01042 on l-dopa dependent animal involuntary movements in rats. Neuropharmacology, 2011, 60, 284-294.	4.1	20
113	Novel and High Affinity Fluorescent Ligands for the Serotonin Transporter Based on (<i>S</i>)-Citalopram. ACS Medicinal Chemistry Letters, 2014, 5, 696-699.	2.8	20
114	Investigation of the binding and functional properties of extended length D3 dopamine receptor-selective antagonists. European Neuropsychopharmacology, 2015, 25, 1448-1461.	0.7	20
115	Dopamine D ₄ Receptor-Selective Compounds Reveal Structure–Activity Relationships that Engender Agonist Efficacy. Journal of Medicinal Chemistry, 2019, 62, 3722-3740.	6.4	20
116	Structure–Activity Relationships for a Series of (Bis(4-fluorophenyl)methyl)sulfinyl Alkyl Alicyclic Amines at the Dopamine Transporter: Functionalizing the Terminal Nitrogen Affects Affinity, Selectivity, and Metabolic Stability. Journal of Medicinal Chemistry, 2020, 63, 2343-2357.	6.4	20
117	Modafinil and its structural analogs as atypical dopamine uptake inhibitors and potential medications for psychostimulant use disorder. Current Opinion in Pharmacology, 2021, 56, 13-21.	3.5	20
118	Novel pharmacotherapies for cocaine abuse 1997 - 2000. Expert Opinion on Therapeutic Patents, 2000, 10, 1095-1122.	5.0	19
119	Relations between stimulation of mesolimbic dopamine and place conditioning in rats produced by cocaine or drugs that are tolerant to dopamine transporter conformational change. Psychopharmacology, 2013, 229, 307-321.	3.1	19
120	Further Characterization of Quinpirole-Elicited Yawning as a Model of Dopamine D ₃ Receptor Activation in Male and Female Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 205-211.	2.5	19
121	Enantioselective synthesis of S-(+)-2β-carboalkoxy-3α-[bis(4-fluorophenyl)methoxy]tropanes as novel probes for the dopamine transporter. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1249-1252.	2.2	17
122	Structureâ^'Activity Relationship Studies on a Novel Series of (S)-2β-Substituted 3α-[Bis(4-fluoro- or) Tj ETQq0 0 2006, 49, 6391-6399.	0 rgBT /O 6.4	verlock 10 Tf 17
123	Tropane-Based Ibogaine Analog Rescues Folding-Deficient Serotonin and Dopamine Transporters. ACS Pharmacology and Translational Science, 2021, 4, 503-516.	4.9	17
124	R-Modafinil Attenuates Nicotine-Taking and Nicotine-Seeking Behavior in Alcohol-Preferring Rats. Neuropsychopharmacology, 2015, 40, 1762-1771.	5.4	16
125	Targeting of dopamine transporter to filopodia requires an outward-facing conformation of the transporter. Scientific Reports, 2017, 7, 5399.	3.3	16
126	Dual DAT/ĺƒ1 receptor ligands based on 3-(4-(3-(bis(4-fluorophenyl)amino)propyl)piperazin-1-yl)-1-phenylpropan-1-ol. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5238-5241.	2.2	15

#	Article	IF	CITATIONS
127	Differential Internalization Rates and Postendocytic Sorting of the Norepinephrine and Dopamine Transporters Are Controlled by Structural Elements in the N Termini. Journal of Biological Chemistry, 2016, 291, 5634-5651.	3.4	15
128	Structure–Activity Relationship Studies on a Series of 3α-[Bis(4-fluorophenyl)methoxy]tropanes and 3α-[Bis(4-fluorophenyl)methylamino]tropanes As Novel Atypical Dopamine Transporter (DAT) Inhibitors for the Treatment of Cocaine Use Disorders. Journal of Medicinal Chemistry, 2017, 60, 10172-10187.	6.4	15
129	Distinct effects of (<i>R</i>)â€modafinil and its (<i>R</i>)―and (<i>S</i>)â€fluoroâ€analogs on mesolimbic extracellular dopamine assessed by voltammetry and microdialysis in rats. European Journal of Neuroscience, 2019, 50, 2045-2053.	2.6	15
130	(±)VK4â€40, a novel dopamine D ₃ receptor partial agonist, attenuates cocaine reward and relapse in rodents. British Journal of Pharmacology, 2020, 177, 4796-4807.	5.4	15
131	Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap?. Frontiers in Neuroscience, 2021, 15, 656475.	2.8	15
132	Toward Reducing hERG Affinities for DAT Inhibitors with a Combined Machine Learning and Molecular Modeling Approach. Journal of Chemical Information and Modeling, 2021, 61, 4266-4279.	5.4	15
133	Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons. Neuropharmacology, 2017, 123, 410-419.	4.1	14
134	Novel Dual-Target μ-Opioid Receptor and Dopamine D ₃ Receptor Ligands as Potential Nonaddictive Pharmacotherapeutics for Pain Management. Journal of Medicinal Chemistry, 2021, 64, 7778-7808.	6.4	14
135	Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia. European Journal of Pharmacology, 2014, 732, 105-110.	3.5	13
136	Chiral Resolution and Serendipitous Fluorination Reaction for the Selective Dopamine D3 Receptor Antagonist BAK2-66. ACS Medicinal Chemistry Letters, 2014, 5, 647-651.	2.8	13
137	Multitarget 1,4-Dioxane Compounds Combining Favorable D ₂ -like and 5-HT _{1A} Receptor Interactions with Potential for the Treatment of Parkinson's Disease or Schizophrenia. ACS Chemical Neuroscience, 2019, 10, 2222-2228.	3.5	13
138	Evidence for a Stereoselective Mechanism for Bitopic Activity by Extended-Length Antagonists of the D ₃ Dopamine Receptor. ACS Chemical Neuroscience, 2020, 11, 3309-3320.	3.5	13
139	Structure-activity relationships for a series of (Bis(4-fluorophenyl)methyl)sulfinylethyl-aminopiperidines and -piperidine amines at the dopamine transporter: Bioisosteric replacement of the piperazine improves metabolic stability. European Journal of Medicinal Chemistry, 2020, 208, 112674.	5.5	13
140	Modafinil potentiates cocaine self-administration by a dopamine-independent mechanism: possible involvement of gap junctions. Neuropsychopharmacology, 2020, 45, 1518-1526.	5.4	13
141	Novel 1-phenylcycloalkanecarboxylic acid derivatives as potential anticonvulsant agents. Journal of Medicinal Chemistry, 1991, 34, 3159-3164.	6.4	12
142	Novel Fluorescent Ligands Enable Single-Molecule Localization Microscopy of the Dopamine Transporter. ACS Chemical Neuroscience, 2020, 11, 3288-3300.	3.5	12
143	Effects of the selective dopamine D3 receptor antagonist PG01037 on morphine-induced hyperactivity and antinociception in mice. Behavioural Brain Research, 2021, 415, 113506.	2.2	12
144	Structure Activity Relationships for a Series of Eticlopride-Based Dopamine D ₂ /D ₃ Receptor Bitopic Ligands. Journal of Medicinal Chemistry, 2021, 64, 15313-15333.	6.4	12

#	Article	IF	CITATIONS
145	[3H]MFZ 2-12: A Novel Radioligand for the Dopamine Transporter. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1659-1661.	2.2	11
146	Design and Synthesis of a Novel Photoaffinity Ligand for the Dopamine and Serotonin Transporters Based on 2β-Carbomethoxy-3β-biphenyltropane. Journal of Medicinal Chemistry, 2006, 49, 6621-6625.	6.4	11
147	Current Perspectives on Selective Dopamine D3 Receptor Antagonists/Partial Agonists as Pharmacotherapeutics for Opioid and Psychostimulant Use Disorders. Current Topics in Behavioral Neurosciences, 2022, , 157-201.	1.7	11
148	Novel Azido-Iodo Photoaffinity Ligands for the Human Serotonin Transporter Based on the Selective Serotonin Reuptake Inhibitor (<i>S</i>)-Citalopram. Journal of Medicinal Chemistry, 2015, 58, 5609-5619.	6.4	10
149	Exception That Proves the Rule: Investigation of Privileged Stereochemistry in Designing Dopamine D3R Bitopic Agonists. ACS Medicinal Chemistry Letters, 2020, 11, 1956-1964.	2.8	10
150	Chirality of Novel Bitopic Agonists Determines Unique Pharmacology at the Dopamine D3 Receptor. Biomolecules, 2021, 11, 570.	4.0	10
151	A Novel Bromine-Containing Paroxetine Analogue Provides Mechanistic Clues for Binding Ambiguity at the Central Primary Binding Site of the Serotonin Transporter. ACS Chemical Neuroscience, 2019, 10, 3946-3952.	3.5	9
152	Design and Synthesis of Fluorescent Methylphenidate Analogues for a FRETâ€Based Assay of Synapsin III Binding. ChemMedChem, 2020, 15, 1330-1337.	3.2	9
153	Pharmacological classification of centrally acting drugs using EEG in freely moving rats: an old tool to identify new atypical dopamine uptake inhibitors. Neuropharmacology, 2019, 161, 107446.	4.1	8
154	Illuminating the norepinephrine transporter: fluorescent probes based on nisoxetine and talopram. RSC Medicinal Chemistry, 2021, 12, 1174-1186.	3.9	8
155	Precursors of the mammalian synthesis of morphine: (+)-salutaridine and (â^')-thebaine from (+)-6-demethylsalutaridine, and (â^')-N -13 CH3 -thebaine from (âr')-northebaine. FEBS Letters, 1986, 206, 125-129.	2.8	7
156	N-8-Substituted benztropinamine analogs as selective dopamine transporter ligands. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5419-5423.	2.2	7
157	A Novel Class of Dopamine D ₄ Receptor Ligands Bearing an Imidazoline Nucleus. ChemMedChem, 2016, 11, 1819-1828.	3.2	7
158	Scaffold Hybridization Strategy Leads to the Discovery of Dopamine D3 Receptor-Selective or Multitarget Bitopic Ligands Potentially Useful for Central Nervous System Disorders. ACS Chemical Neuroscience, 2021, 12, 3638-3649.	3.5	7
159	Chiral Cyclic Aliphatic Linkers as Building Blocks for Selective Dopamine D ₂ or D ₃ Receptor Agonists. Journal of Medicinal Chemistry, 2021, 64, 16088-16105.	6.4	7
160	Yawning elicited by intravenous ethanol in rhesus monkeys with experience self-administering cocaine and ethanol: Involvement of dopamine D3 receptors. Alcohol, 2018, 69, 1-5.	1.7	5
161	Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs. Biochemical Pharmacology, 2017, 142, 204-215.	4.4	4
162	Identification of the benztropine analog [125I]GA II 34 binding site on the human dopamine transporter. Neurochemistry International, 2019, 123, 34-45.	3.8	4

AMY HAUCK NEWMAN

#	Article	IF	CITATIONS
163	Allosterically Linked Binding Sites in Serotonin Transporter Revealed by Single Molecule Force Spectroscopy. Frontiers in Molecular Biosciences, 2020, 7, 99.	3.5	4
164	Toward Reducing HERG Affinities for Dat Inhibitors with a Combined Machine Learning and Molecular Modeling Approach. Biophysical Journal, 2019, 116, 562a.	0.5	3
165	[O-methyl-11C]N-(4-(4-(3-Chloro-2-methoxyphenyl)-piperazin-1-yl)butyl)-1H-indole-2-carboxamide ([11C]BAK4-51) Is an Efflux Transporter Substrate and Ineffective for PET Imaging of Brain D3 Receptors in Rodents and Monkey. Molecules, 2018, 23, 2737.	3.8	2
166	AHN649: Preclinical Evaluation of a Novel Anticonvulsant and Neuroprotective Analog of Dextromethorphan. CNS Neuroscience & Therapeutics, 1997, 3, 168-180.	4.0	1
167	A Novel PKC Inhibitor Shows Promise for Amphetamine Use Disorders. Neuropsychopharmacology, 2017, 42, 1929-1930.	5.4	1
168	Photoaffinityâ€Mediated Identification of a Third Citalopram Analog Binding Site on the Serotonin Transporter. FASEB Journal, 2018, 32, 680.1.	0.5	1
169	A Medicinal Chemist's Journey at the National Institutes of Health One Molecule at a Time. ACS Medicinal Chemistry Letters, 2020, 11, 221-224.	2.8	0
170	Nanoscopic Dopamine Transporter Distribution and Conformation are Inversely Regulated by Excitatory Drive and D ₂ -Autoreceptor Activity. SSRN Electronic Journal, 0, , .	0.4	0
171	Differential effects of dopamine transporter inhibitors on cocaineâ€stimulated dopamine neurotransmission. FASEB Journal, 2006, 20, .	0.5	0
172	Assessment of Reinforcing Effects of Benztropine Analogues and Their Effects on Cocaine Selfâ€Administration: Comparisons with Monoamine Uptake Inhibitors. FASEB Journal, 2008, 22, 713.12.	0.5	0
173	Characterization of PGâ€619, a dopamine D3 receptor partial agonist, on cocaine selfâ€administration and drugâ€elicited yawning in rhesus monkeys. FASEB Journal, 2009, 23, 588.4.	0.5	0
174	In Vivo Binding of Nâ€Substituted Benztropine Analogs and Antagonism of Cocaine Selfâ€Administration. FASEB Journal, 2013, 27, 659.8.	0.5	0
175	Discriminativeâ€stimulus effects of 3,4â€methylenedioxyâ€Nâ€methylamphetamine (MDMA) and a novel MDMA quatenary analog. FASEB Journal, 2013, 27, 1098.10.	0.5	0
176	The role of dopamine D3 receptors in the discriminative stimulus effects of quinpirole, cocaine, and methamphetamine in rhesus monkeys. FASEB Journal, 2013, 27, 659.4.	0.5	0
177	Effects of chronic treatment with the D3 receptorâ€selective compound PG619 on cocaine (COC) selfâ€administration and FDG brain activity in rhesus monkeys. FASEB Journal, 2013, 27, 659.1.	0.5	0
178	Evidence for a Stereoselective Mechanism of Action for Nonâ€competitive Antagonism of the D3 Dopamine Receptor by Extended‣ength Bitopic Ligands. FASEB Journal, 2018, 32, 827.12.	0.5	0
179	Novel Dopamine D4 Receptorâ€6elective Compounds Reveal Structureâ€Activity Relationships that Engender Agonist Efficacy. FASEB Journal, 2019, 33, lb40.	0.5	0
180	Gap Junctions Modulate The Effects Of Modafinil On Cocaine Selfâ€Administration Behavior In A Dopamineâ€Independent Fashion In Rats. FASEB Journal, 2020, 34, 1-1.	0.5	0