Anna E Marneth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1947670/publications.pdf

Version: 2024-02-01

1306789 1281420 15 412 7 11 citations g-index h-index papers 15 15 15 824 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A Dominant-Negative <i> GFI1B </i> Mutation in the Gray Platelet Syndrome. New England Journal of Medicine, 2014, 370, 245-253.	13.9	152
2	Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica, 2018, 103, 148-162.	1.7	96
3	The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a034876.	2.9	42
4	Platelet CD34 expression and $\hat{l}\pm\hat{l}$ -granule abnormalities in GFI1B- and RUNX1-related familial bleeding disorders. Blood, 2017, 129, 1733-1736.	0.6	28
5	The kinases IKBKE and TBK1 regulate MYC-dependent survival pathways through YB-1 in AML and are targets for therapy. Blood Advances, 2018, 2, 3428-3442.	2.5	24
6	Molecular mechanisms of bleeding disorderassociated GFI1B ^{Q287*} mutation and its affected pathways in megakaryocytes and platelets. Haematologica, 2019, 104, 1460-1472.	1.7	21
7	GFI1 is required for RUNX1/ETO positive acute myeloid leukemia. Haematologica, 2018, 103, e395-e399.	1.7	13
8	Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Science Translational Medicine, 2022, 14, .	5.8	10
9	Augmenting emergency granulopoiesis with CpG conditioned mesenchymal stromal cells in murine neutropenic sepsis. Blood Advances, 2020, 4, 4965-4979.	2.5	9
10	Whole-genome CRISPR screening identifies $<$ i>N- $<$ i>glycosylation as a genetic and therapeutic vulnerability in $<$ i>CALR $<$ i>-mutant MPN. Blood, 0, , .	0.6	9
11	Inherited missense variants that affect GFI1B function do not necessarily cause bleeding diatheses. Haematologica, 2019, 104, e260-e264.	1.7	7
12	Busy signal: platelet-derived growth factor activation in myelofibrosis. Haematologica, 2020, 105, 1988-1990.	1.7	1
13	Gfi136N As a Novel Marker and Therapeutic Target of MDS and AML. Blood, 2014, 124, 3245-3245.	0.6	0
14	Megakaryocyte Expansion and Platelet CD34 Expression Observed in GFI1BQ287*-Related Bleeding and Platelet Disorder Is Caused By Quenching of the Lysine Specific Demethylase LSD1/KDM1A. Blood, 2016, 128, 363-363.	0.6	0
15	772â€MHC-I skewing in mutant calreticulin-positive myeloproliferative neoplasms is countered by heteroclitic peptide cancer vaccination. , 2021, 9, A807-A807.		0