Mark C Wyatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1947426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>rave</scp> : a non-parametric method for recovering the surface brightness and height profiles of edge-on debris discs. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4921-4936.	4.4	5
2	ALMA's view of the M-dwarf CSC 07396-00759's edge-on debris disc: AU Mic's coeval twin. Notices of the Royal Astronomical Society, 2022, 512, 4752-4764.	Monthly 4.4	1
3	Polarization from Aligned Dust Grains in the β Pic Debris Disk. Astrophysical Journal, 2022, 930, 49.	4.5	4
4	A â^1⁄475 per cent occurrence rate of debris discs around F stars in the βÂPic moving group. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5390-5416.	4.4	27
5	Formation of Gaps in Self-gravitating Debris Disks by Secular Resonance in a Single-planet System. I. A Simplified Model. Astrophysical Journal, 2021, 910, 13.	4.5	21
6	SpiKeS: Precision Warm Spitzer Photometry of the Kepler Field. Astrophysical Journal, Supplement Series, 2021, 254, 11.	7.7	2
7	ALMA imaging of the M-dwarf Fomalhaut C's debris disc. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4497-4510.	4.4	6
8	Discovery of an Edge-on Circumstellar Debris Disk around BD+45° 598: A Newly Identified Member of the β Pictoris Moving Group. Astrophysical Journal, 2021, 912, 115.	4.5	11
9	The effect of stellar multiplicity on protoplanetary discs: a near-infrared survey of the Lupus star-forming region. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2305-2315.	4.4	23
10	Carbon monoxide gas produced by a giant impact in the inner region of a young system. Nature, 2021, 598, 425-428.	27.8	8
11	Comet fragmentation as a source of the zodiacal cloud. Monthly Notices of the Royal Astronomical Society, 2021, 510, 834-857.	4.4	7
12	Extrasolar Kuiper belts. , 2020, , 351-376.		11
13	Dust size and spatial distributions in debris discs: predictions for exozodiacal dust dragged in from an exo-Kuiper belt. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1143-1165.	4.4	11
14	Evolution of the Earth's atmosphere during Late Veneer accretion. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5334-5362.	4.4	17
15	Evidence for a high mutual inclination between the cold Jupiter and transiting super Earth orbiting π Men. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2096-2118.	4.4	42
16	Solution to the debris disc mass problem: planetesimals are born small?. Monthly Notices of the Royal Astronomical Society, 2020, 500, 718-735.	4.4	41
17	Survey of planetesimal belts with ALMA: gas detected around the Sun-like star HD 129590. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2811-2830.	4.4	20
18	Mutual inclinations between giant planets and their debris discs in HDÂ113337 and HDÂ38529. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5059-5074.	4.4	8

MARK C WYATT

#	Article	lF	CITATIONS
19	Dust Populations in the Iconic Vega Planetary System Resolved by ALMA. Astrophysical Journal, 2020, 898, 146.	4.5	16
20	The REASONS Survey: Resolved Millimeter Observations of a Large Debris Disk around the Nearby F Star HD 170773. Astrophysical Journal, 2019, 881, 84.	4.5	15
21	A statistically significant lack of debris discs in medium separation binary systems. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3588-3606.	4.4	29
22	The wavelength dependence of interstellar polarization in the Local Hot Bubble. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3636-3646.	4.4	17
23	An automated search for transiting exocomets. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5587-5596.	4.4	13
24	Oort cloud asteroids: collisional evolution, the Nice Model, and the Grand Tack. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5511-5518.	4.4	9
25	The Mass of Stirring Bodies in the AU Mic Debris Disk Inferred from Resolved Vertical Structure. Astrophysical Journal, 2019, 875, 87.	4.5	43
26	A planetesimal orbiting within the debris disc around a white dwarf star. Science, 2019, 364, 66-69.	12.6	131
27	Modelling the distributions of white dwarf atmospheric pollution: a low Mg abundance for accreted planetesimals?. Monthly Notices of the Royal Astronomical Society, 2019, , .	4.4	13
28	A circumbinary protoplanetary disk in a polar configuration. Nature Astronomy, 2019, 3, 230-235.	10.1	59
29	Debris Disks: Probing Planet Formation. , 2018, , 1-26.		0
30	ALMA observations of the narrow HR 4796A debris ring. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4924-4938.	4.4	38
31	Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, and h. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2649-2672.	4.4	36
32	Using warm dust to constrain unseen planets. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5560-5579.	4.4	12
33	Debris Disks: Probing Planet Formation. , 2018, , 2543-2568.		7
34	The KIC 8462852 light curve from 2015.75 to 2018.18 shows a variable secular decline. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2235-2248.	4.4	9
35	Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1651-1671.	4.4	20
36	The HOSTS survey for exo-zodiacal dust: preliminary results and future prospects. , 2018, , .		6

MARK C WYATT

#	Article	IF	CITATIONS
37	First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti. Astrophysical Journal Letters, 2017, 834, L12.	8.3	36
38	A Complete ALMA Map of the Fomalhaut Debris Disk. Astrophysical Journal, 2017, 842, 8.	4.5	89
39	Transit probabilities in secularly evolving planetary systems. Monthly Notices of the Royal Astronomical Society, 2017, 469, 171-192.	4.4	36
40	Molecular Gas in Debris Disks around Young A-type Stars. Astrophysical Journal, 2017, 849, 123.	4.5	80
41	The Northern arc of ε Eridani's Debris Ring as seen by ALMA. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3200-3212.	4.4	68
42	The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc. Royal Society Open Science, 2017, 4, 160652.	2.4	25
43	SONS: The JCMT legacy survey of debris discs in the submillimetre. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3606-3663.	4.4	106
44	Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals. Monthly Notices of the Royal Astronomical Society, 2017, 469, 521-550.	4.4	101
45	The SHARDDS survey: First resolved image of the HD 114082 debris disk in the Lower Centaurus Crux with SPHERE. Astronomy and Astrophysics, 2016, 596, L4.	5.1	36
46	Insights into Planet Formation from Debris Disks. Space Science Reviews, 2016, 205, 231-265.	8.1	43
47	Two-temperature Debris Disks: Signposts for Directly Imaged Planets?. Proceedings of the International Astronomical Union, 2015, 10, 163-166.	0.0	0
48	Constraining the orbits of sub-stellar companions imaged over short orbital arcs. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3679-3688.	4.4	31
49	EXO-ZODI MODELING FOR THE LARGE BINOCULAR TELESCOPE INTERFEROMETER. Astrophysical Journal, Supplement Series, 2015, 216, 23.	7.7	27
50	THE INNER DISK STRUCTURE, DISK-PLANET INTERACTIONS, AND TEMPORAL EVOLUTION IN THE Î ² PICTORIS SYSTEM: A TWO-EPOCH <i>HST</i> /STIS CORONAGRAPHIC STUDY. Astrophysical Journal, 2015, 800, 136.	4.5	47
51	Double-ringed debris discs could be the work of eccentric planets: explaining the strange morphology of HD 107146. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3330-3341.	4.4	33
52	Dancing with the stars: formation of the Fomalhaut triple system and its effect on the debris discs. Monthly Notices of the Royal Astronomical Society, 2014, 442, 142-147.	4.4	16
53	Dynamical evolution of an eccentric planet and a less massive debris disc. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2541-2560.	4.4	83
54	Debris froms giant impacts between planetary embryos at large orbital radii. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3757-3777.	4.4	118

MARK C WYATT

#	Article	IF	CITATIONS
55	RESOLVED IMAGING OF THE HRÂ8799 DEBRIS DISK WITH HERSCHEL *. Astrophysical Journal, 2014, 780, 97.	4.5	107
56	Light from Shattered Worlds: Debris from Giant Impacts. Proceedings of the International Astronomical Union, 2013, 8, 344-345.	0.0	0
57	The Population of Debris Discs Orbiting Subgiants. Proceedings of the International Astronomical Union, 2013, 8, 328-329.	0.0	0
58	Dependence of a planet's chaotic zone on particle eccentricity: the shape of debris disc inner edges. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3074-3080.	4.4	95
59	The Solar system's post-main-sequence escape boundary. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2969-2981.	4.4	70
60	Debris from terrestrial planet formation: the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 2012, 425, 657-679.	4.4	123
61	The great escape: how exoplanets and smaller bodies desert dying stars. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2104-2123.	4.4	194
62	Post-Main Sequence Evolution of Debris Discs. , 2011, , .		0
63	Resolved imaging of the HDâ€ f 191089 debris disc. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2-12.	4.4	28
64	Hamiltonian model of capture into mean motion resonance. Proceedings of the International Astronomical Union, 2010, 6, 300-303.	0.0	1
65	The history of the Solar system's debris disc: observable properties of the Kuiper belt. Monthly Notices of the Royal Astronomical Society, 2009, 399, 385-398.	4.4	98
66	Debris disc stirring by secular perturbations from giant planets. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1403-1414.	4.4	131
67	Evolution of Debris Disks. Annual Review of Astronomy and Astrophysics, 2008, 46, 339-383.	24.3	728
68	Dynamical Simulations of HD 69830. Proceedings of the International Astronomical Union, 2008, 4, 540-543.	0.0	0
69	Mid-infrared images of \hat{l}^2 Pictoris and the possible role of planetesimal collisions in the central disk. Nature, 2005, 433, 133-136.	27.8	138
70	Orbital Evolution of Interplanetary Dust. Astronomy and Astrophysics Library, 2001, , 569-639.	0.1	49
71	Imaging [CI] around HD 131835: reinterpreting young debris discs with protoplanetary disc levels of CO gas as shielded secondary discs. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	31
72	The Role of Impacts on the Atmospheres on the Moons of Outer Giants. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0