Jennifer Hirst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1947092/publications.pdf

Version: 2024-02-01

30	2,072	23	29
papers	citations	h-index	g-index
33	33	33	2739
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rag GTPases and phosphatidylinositol 3-phosphate mediate recruitment of the AP-5/SPG11/SPG15 complex. Journal of Cell Biology, 2021, 220, .	2.3	14
2	Expanding the Spectrum of <scp><i>AP5Z1â€</i></scp> Related Hereditary Spastic Paraplegia (<scp>HSPâ€6PG48</scp>): A Multicenter Study on a Rare Disease. Movement Disorders, 2021, 36, 1034-1038.	2.2	9
3	High-throughput imaging of ATG9A distribution as a diagnostic functional assay for adaptor protein complex 4-associated hereditary spastic paraplegia. Brain Communications, 2021, 3, fcab221.	1.5	11
4	High-Throughput Imaging of ATG9A Distribution as a Diagnostic Functional Assay for Adaptor Protein Complex 4: Associated Hereditary Spastic Paraplegia (AP-4-HSP)., 2021, 52,.		0
5	Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking. Human Molecular Genetics, 2020, 29, 320-334.	1.4	45
6	Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia. Brain, 2020, 143, 2929-2944.	3.7	29
7	Loss of <i>ap4s1</i> in zebrafish leads to neurodevelopmental defects resembling spastic paraplegia 52. Annals of Clinical and Translational Neurology, 2020, 7, 584-589.	1.7	15
8	Adaptor protein complexes and disease at a glance. Journal of Cell Science, 2019, 132, jcs222992.	1.2	81
9	Clinical and genetic characterization of <i>AP4B1</i> Sâ€associated SPG47. American Journal of Medical Genetics, Part A, 2018, 176, 311-318.	0.7	47
10	AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nature Communications, 2018, 9, 3958.	5.8	105
11	Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval. PLoS Biology, 2018, 16, e2004411.	2.6	100
12	Complicated spastic paraplegia in patients with <i>AP5Z1</i> mutations (SPG48). Neurology: Genetics, 2016, 2, e98.	0.9	35
13	Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Human Molecular Genetics, 2015, 24, 4984-4996.	1.4	80
14	Change your Tplate, change your fate: plant CME and beyond. Trends in Plant Science, 2015, 20, 41-48.	4.3	54
15	Contributions of epsinR and gadkin to clathrin-mediated intracellular trafficking. Molecular Biology of the Cell, 2015, 26, 3085-3103.	0.9	58
16	Recessive loss-of-function mutations in AP4S1 cause mild fever-sensitive seizures, developmental delay and spastic paraplegia through loss of AP-4 complex assembly. Human Molecular Genetics, 2015, 24, 2218-2227.	1.4	53
17	Dictyostelium Cultivation, Transfection, Microscopy and Fractionation. Bio-protocol, 2015, 5, .	0.2	5
18	Fractionation profiling: a fast and versatile approach for mapping vesicle proteomes and protein–protein interactions. Molecular Biology of the Cell, 2014, 25, 3178-3194.	0.9	42

#	Article	IF	Citations
19	Characterization of TSET, an ancient and widespread membrane trafficking complex. ELife, 2014, 3, e02866.	2.8	114
20	Adaptor Protein Complexes <scp>AP</scp> â€4 and <scp>AP</scp> â€5: New Players in Endosomal Trafficking and Progressive Spastic Paraplegia. Traffic, 2013, 14, 153-164.	1.3	119
21	Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Molecular Biology of the Cell, 2013, 24, 2558-2569.	0.9	95
22	Distinct and Overlapping Roles for AP-1 and GGAs Revealed by the "Knocksideways―System. Current Biology, 2012, 22, 1711-1716.	1.8	161
23	A potential role for the clathrin adaptor GGA in Drosophila spermatogenesis. BMC Cell Biology, 2011, 12, 22.	3.0	12
24	The Fifth Adaptor Protein Complex. PLoS Biology, 2011, 9, e1001170.	2.6	241
25	Spatial and Functional Relationship of GGAs and APâ€l in <i>Drosophila</i> and HeLa Cells. Traffic, 2009, 10, 1696-1710.	1.3	77
26	Auxilin Depletion Causes Selfâ€Assembly of Clathrin into Membraneless Cages <i>In Vivo</i> . Traffic, 2008, 9, 1354-1371.	1.3	50
27	The Role of Cargo Proteins in GGA Recruitment. Traffic, 2007, 8, 594-604.	1.3	26
28	The Aftiphilin/p200/Î ³ -Synergin Complex. Molecular Biology of the Cell, 2005, 16, 2554-2565.	0.9	63
29	EpsinR Is an Adaptor for the SNARE Protein Vti1b. Molecular Biology of the Cell, 2004, 15, 5593-5602.	0.9	109
30	EpsinR: an ENTH Domain-containing Protein that Interacts with AP-1. Molecular Biology of the Cell, 2003, 14, 625-641.	0.9	214