Yujiao Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1947043/publications.pdf

Version: 2024-02-01

		687220	887953
17	704	13	17
papers	704 citations	h-index	g-index
17	17	17	911
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synergistic catalysis of species in molten salt hydrate for conversion of cellulose to 5-hydroxymethylfurfural. Biomass and Bioenergy, 2022, 158, 106363.	2.9	14
2	Energy Analysis of Physical Absorption and Chemical Absorption of CO ₂ in Ionic Liquids. Energy Technology, 2020, 8, 1900529.	1.8	7
3	N-Doped Carbon Materials as Heterogeneous Catalysts for High Efficiency Isomerization Glucose to Fructose in Aqueous Media. Catalysis Letters, 2020, 150, 493-504.	1.4	17
4	A Microtubular Direct Carbon Solid Oxide Fuel Cell Operated on the Biochar Derived from Pepper Straw. Energy Technology, 2020, 8, 1901077.	1.8	18
5	Efficient catalytic conversion of cellulose to levulinic acid in the biphasic system of molten salt hydrate and methyl isobutyl ketone. Green Chemistry, 2020, 22, 4240-4251.	4.6	44
6	Temperature-Responsive HCl-Releasing Catalysts for Cellulose Hydrolysis into Glucose. Catalysis Letters, 2020, 150, 3184-3195.	1.4	4
7	Isomerization Kinetics of Glucose to Fructose in Aqueous Solution with Magnesiumâ€Aluminum Hydrotalcites. ChemistrySelect, 2020, 5, 270-279.	0.7	13
8	Al ₂ O ₃ â€TiO ₂ Modified Sulfonated Carbon with Hierarchically Ordered Pores for Glucose Conversion to 5â€HMF. ChemistrySelect, 2019, 4, 5724-5731.	0.7	19
9	Enhancing the Power Output of Direct Carbon Solid Oxide Fuel Cell Using Baâ€Loaded Activated Carbon Fuel. Energy Technology, 2019, 7, 1800885.	1.8	16
10	Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants. Applied Energy, 2018, 227, 742-750.	5.1	33
11	Synergetic Effect of BrÃ,nsted/Lewis Acid Sites and Water on the Catalytic Dehydration of Glucose to 5â∈Hydroxymethylfurfural by Heteropolyacidâ∈Based Ionic Hybrids. ChemistryOpen, 2018, 7, 824-832.	0.9	22
12	AlNb/SBAâ€15 Catalysts with Tunable Lewis and Bronsted Acidic Sites for Glucose Conversion to HMF. ChemistrySelect, 2018, 3, 3555-3560.	0.7	22
13	A Thermodynamic Study of Aqueous 1â€Allylâ€3â€Methylimidazolium Formate Ionic Liquid as a Tailored Sorbent for Carbon Dioxide Separation. Energy Technology, 2017, 5, 1464-1471.	1.8	5
14	Screening of deep eutectic solvents (DESs) as green CO ₂ sorbents: from solubility to viscosity. New Journal of Chemistry, 2017, 41, 290-301.	1.4	186
15	Evaluation of imidazolium-based ionic liquids for biogas upgrading. Applied Energy, 2016, 175, 69-81.	5.1	36
16	Effect of Water on the Density, Viscosity, and CO ₂ Solubility in Choline Chloride/Urea. Journal of Chemical & Engineering Data, 2014, 59, 3344-3352.	1.0	170
17	Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids. Applied Energy, 2014, 136, 325-335.	5.1	78