
Isao Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1946470/publications.pdf Version: 2024-02-01

Ιελο Κοβλγλεμι

#	Article	IF	CITATIONS
1	Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluidics and Nanofluidics, 2012, 13, 151-178.	2.2	297
2	Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews, 2013, 65, 1626-1663.	13.7	250
3	Silicon array of elongated through-holes for monodisperse emulsion droplets. AICHE Journal, 2002, 48, 1639-1644.	3.6	223
4	Microfluidics for food, agriculture and biosystems industries. Lab on A Chip, 2011, 11, 1574.	6.0	200
5	Preparation characteristics of oil-in-water emulsions using differently charged surfactants in straight-through microchannel emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 229, 33-41.	4.7	138
6	Novel Asymmetric Through-Hole Array Microfabricated on a Silicon Plate for Formulating Monodisperse Emulsions. Langmuir, 2005, 21, 7629-7632.	3.5	114
7	Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. Journal of Colloid and Interface Science, 2004, 279, 277-280.	9.4	106
8	Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification. Microfluidics and Nanofluidics, 2010, 9, 77-85.	2.2	92
9	Production of Monodisperse Oil-in-Water Emulsions Using a Large Silicon Straight-Through Microchannel Plate. Industrial & Engineering Chemistry Research, 2005, 44, 5852-5856.	3.7	88
10	CFD Simulation and Analysis of Emulsion Droplet Formation from Straight-Through Microchannels. Langmuir, 2004, 20, 9868-9877.	3.5	85
11	Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluidics and Nanofluidics, 2008, 4, 167-177.	2.2	83
12	Effect of dispersed phase viscosity on maximum droplet generation frequency in microchannel emulsification using asymmetric straight-through channels. Microfluidics and Nanofluidics, 2011, 10, 1199-1209.	2.2	78
13	Effects of Type and Physical Properties of Oil Phase on Oil-in-Water Emulsion Droplet Formation in Straight-Through Microchannel Emulsification, Experimental and CFD Studies. Langmuir, 2005, 21, 5722-5730.	3.5	76
14	Formulation of monodisperse emulsions using submicron-channel arrays. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296, 285-289.	4.7	75
15	Effect of chitosan on the stability and properties of modified lecithin stabilized oil-in-water monodisperse emulsion prepared by microchannel emulsification. Food Hydrocolloids, 2009, 23, 600-610.	10.7	72
16	Microchannel emulsification for mass production of uniform fine droplets: integration of microchannel arrays on a chip. Microfluidics and Nanofluidics, 2010, 8, 255-262.	2.2	71
17	Analysis of Flow Phenomena in Gastric Contents Induced by Human Gastric Peristalsis Using CFD. Food Biophysics, 2010, 5, 330-336.	3.0	68
18	Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries. Food and Bioprocess Technology, 2017, 10, 229-248.	4.7	63

Isao Kobayashi

#	Article	IF	CITATIONS
19	Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 797-802.	1.9	61
20	Development of a Human Gastric Digestion Simulator Equipped with Peristalsis Function for the Direct Observation and Analysis of the Food Digestion Process. Food Science and Technology Research, 2014, 20, 225-233.	0.6	59
21	Preparation characteristics of monodispersed oil-in-water emulsions with large particles stabilized by proteins in straight-through microchannel emulsification. Food Hydrocolloids, 2005, 19, 745-751.	10.7	55
22	CFD analysis of microchannel emulsification: Droplet generation process and size effect of asymmetric straight flow-through microchannels. Chemical Engineering Science, 2011, 66, 5556-5565.	3.8	54
23	Complex coacervates from gelatin and octenyl succinic anhydride modified kudzu starch: Insights of formulation and characterization. Food Hydrocolloids, 2019, 86, 70-77.	10.7	54
24	Preparation of monodisperse water-in-oil-in-water emulsions using microfluidization and straight-through microchannel emulsification. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 65-71.	1.9	53
25	Recent labâ€onâ€chip developments for novel drug discovery. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1381.	6.6	53
26	Formulation and characterization of water-in-oil nanoemulsions loaded with açaÃ-berry anthocyanins: Insights of degradation kinetics and stability evaluation of anthocyanins and nanoemulsions. Food Research International, 2018, 106, 542-548.	6.2	52
27	Encapsulation of Lipophilic Bioactive Molecules by Microchannel Emulsification. Food Biophysics, 2008, 3, 126-131.	3.0	50
28	Preparation of uniformly sized alginate microspheres using the novel combined methods of microchannel emulsification and external gelation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 351, 9-17.	4.7	50
29	Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate: Effect of emulsifier and oil types. Powder Technology, 2008, 183, 37-45.	4.2	49
30	Monodisperse W/O/W emulsions encapsulating l-ascorbic acid: Insights on their formulation using microchannel emulsification and stability studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 69-77.	4.7	48
31	Formulation and characterization of O/W emulsions stabilized using octenyl succinic anhydride modified kudzu starch. Carbohydrate Polymers, 2017, 176, 91-98.	10.2	48
32	Controlled Generation of Monodisperse Discoid Droplets Using Microchannel Arrays. Langmuir, 2006, 22, 10893-10897.	3.5	47
33	Long-term stability of droplet production by microchannel (step) emulsification in microfluidic silicon chips with large number of terraced microchannels. Chemical Engineering Journal, 2018, 333, 380-391.	12.7	47
34	Formulation and stabilization of oil-in-water nanoemulsions using a saponins-rich extract from argan oil press-cake. Food Chemistry, 2018, 246, 457-463.	8.2	46
35	Effect of emulsifiers on the preparation of food-grade oil-in-water emulsions using a straight-through extrusion filter. European Journal of Lipid Science and Technology, 2002, 104, 720-727.	1.5	45
36	Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Research International, 2020, 137, 109723.	6.2	45

#	Article	IF	CITATIONS
37	Formulation of Controlled Size PUFA-Loaded Oil-in-Water Emulsions by Microchannel Emulsification Using β-Carotene-Rich Palm Oil. Industrial & Engineering Chemistry Research, 2008, 47, 6405-6411.	3.7	43
38	Production of monodisperse water-in-oil emulsions consisting of highly uniform droplets using asymmetric straight-through microchannel arrays. Microfluidics and Nanofluidics, 2009, 7, 107-119.	2.2	42
39	Preparation of Monodisperse Food-Grade Oleuropein-Loaded W/O/W Emulsions Using Microchannel Emulsification and Evaluation of Their Storage Stability. Food and Bioprocess Technology, 2014, 7, 2014-2027.	4.7	42
40	Cross-linkable chitosan-based hydrogel microbeads with pH-responsive adsorption properties for organic dyes prepared using size-tunable microchannel emulsification technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 69-78.	4.7	41
41	Comparison of stability of bovine serum albumin-stabilized emulsions prepared by microchannel emulsification and homogenization. Food Hydrocolloids, 2006, 20, 1020-1028.	10.7	38
42	Preparation and characterization of water-in-oil emulsions loaded with high concentration of l-ascorbic acid. LWT - Food Science and Technology, 2013, 51, 448-454.	5.2	37
43	Formulation and characterization of monodisperse O/W emulsions encapsulating astaxanthin extracts using microchannel emulsification: Insights of formulation and stability evaluation. Colloids and Surfaces B: Biointerfaces, 2017, 157, 355-365.	5.0	37
44	The influence of polysaccharide on the stability of protein stabilized oil-in-water emulsion prepared by microchannel emulsification technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440, 136-144.	4.7	36
45	Microencapsulation of betanin in monodisperse W/O/W emulsions. Food Research International, 2018, 109, 489-496.	6.2	33
46	Interfacial characteristics and microchannel emulsification of oleuropein-containing triglyceride oil–water systems. Food Research International, 2014, 62, 467-475.	6.2	32
47	Formulation and characterisation of O/W emulsions stabilised with modified seaweed polysaccharides. International Journal of Food Science and Technology, 2020, 55, 211-221.	2.7	32
48	Controlled preparation of giant vesicles from uniform water droplets obtained by microchannel emulsification with bilayer-forming lipids as emulsifiers. Microfluidics and Nanofluidics, 2009, 6, 811-821.	2.2	29
49	Microchannel emulsification study on formulation and stability characterization of monodisperse oil-in-water emulsions encapsulating quercetin. Food Chemistry, 2016, 212, 27-34.	8.2	29
50	Comparative study of oil-in-water emulsions encapsulating fucoxanthin formulated by microchannel emulsification and high-pressure homogenization. Food Hydrocolloids, 2020, 108, 105977.	10.7	29
51	Emulsion stability of clove oil in chitosan and sodium alginate matrix. International Journal of Food Properties, 2018, 21, 566-581.	3.0	25
52	Temperature effect on microchannel oil-in-water emulsification. Microfluidics and Nanofluidics, 2011, 10, 773-783.	2.2	24
53	Formulation characteristics of triacylglycerol oil-in-water emulsions loaded with ergocalciferol using microchannel emulsification. RSC Advances, 2015, 5, 97151-97162.	3.6	23
54	Encapsulation of β-sitosterol plus γ-oryzanol in O/W emulsions: Formulation characteristics and stability evaluation with microchannel emulsification. Food and Bioproducts Processing, 2017, 102, 222-232.	3.6	23

#	Article	IF	CITATIONS
55	Mixing characterization of liquid contents in human gastric digestion simulator equipped with gastric secretion and emptying. Biochemical Engineering Journal, 2017, 122, 85-90.	3.6	23
56	Formation and stability of emulsions using crude extracts as natural emulsifiers from Argan shells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124536.	4.7	23
57	Generation of uniform drops via through-hole arrays micromachined in stainless-steel plates. Microfluidics and Nanofluidics, 2008, 5, 677-687.	2.2	22
58	Inactivation of Bacillus subtilis Spores in Orange Juice and the Quality Change by High Electric Field Alternating Current. Japan Agricultural Research Quarterly, 2010, 44, 61-66.	0.4	22
59	Preparation and Characterization of Water-in-Oil-in-Water Emulsions Containing a High Concentration ofL-Ascorbic Acid. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1171-1178.	1.3	22
60	Interfacial and emulsifying properties of purified glycyrrhizin and non-purified glycyrrhizin-rich extracts from liquorice root (Glycyrrhiza glabra). Food Chemistry, 2021, 337, 127949.	8.2	22
61	Preparation Characteristics of Lipid Microspheres Using Microchannel Emulsification and Solvent Evaporation Methods. Journal of Chemical Engineering of Japan, 2003, 36, 996-1000.	0.6	21
62	PIV and CFD studies on analyzing intragastric flow phenomena induced by peristalsis using a human gastric flow simulator. Food and Function, 2014, 5, 1839-1847.	4.6	21
63	Precise genome editing in the silkworm Bombyx mori using TALENs and ds- and ssDNA donors – A practical approach. Insect Biochemistry and Molecular Biology, 2016, 78, 29-38.	2.7	21
64	Assessment of Oxidative Stability in Fish Oilâ€inâ€Water Emulsions: Effect of Emulsification Process, Droplet Size and Storage Temperature. Journal of Food Process Engineering, 2017, 40, e12316.	2.9	21
65	Large microchannel emulsification device for mass producing uniformly sized droplets on a liter per hour scale. Green Processing and Synthesis, 2012, 1, .	3.4	20
66	Direct observation and evaluation of cooked white and brown rice digestion by gastric digestion simulator provided with peristaltic function. Food Research International, 2015, 71, 16-22.	6.2	20
67	Stability of monodisperse clove oil droplets prepared by microchannel emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 466, 66-74.	4.7	20
68	Development of a radio frequency heating system for sterilization of vacuum-packed fish in water. Bioscience, Biotechnology and Biochemistry, 2017, 81, 762-767.	1.3	20
69	Formulation and stabilization of nano-/microdispersion systems using naturally occurring edible polyelectrolytes by electrostatic deposition and complexation. Advances in Colloid and Interface Science, 2015, 226, 86-100.	14.7	19
70	Microfibrillated cellulose from Argania spinosa shells as sustainable solid particles for O/W Pickering emulsions. Carbohydrate Polymers, 2021, 251, 116990.	10.2	19
71	Effect of Temperature on Production of Soybean Oil-in-Water Emulsions by Microchannel Emulsification Using Different Emulsifiers. Food Science and Technology Research, 2011, 17, 77-86.	0.6	18
72	Preparation, Characterization, and <i>in Vitro</i> Gastrointestinal Digestibility of Oil-in-Water Emulsion-Agar Gels. Bioscience, Biotechnology and Biochemistry, 2013, 77, 467-474.	1.3	18

#	Article	IF	CITATIONS
73	Formulation of monodisperse oilâ€inâ€water emulsions loaded with ergocalciferol and cholecalciferol by microchannel emulsification: insights of production characteristics and stability. International Journal of Food Science and Technology, 2015, 50, 1807-1814.	2.7	18
74	Microchannel emulsification: A promising technique towards encapsulation of functional compounds. Critical Reviews in Food Science and Nutrition, 2018, 58, 2364-2385.	10.3	18
75	Production Characteristics of Large Soybean Oil Droplets by Microchannel Emulsification Using Asymmetric Through Holes. Japan Journal of Food Engineering, 2010, 11, 37-48.	0.3	18
76	High-aspect-ratio through-hole array microfabricated in a PMMA plate for monodisperse emulsion production. Microsystem Technologies, 2008, 14, 1349-1357.	2.0	17
77	β-lactoglobulin as food grade surfactant for clove oil-in-water and limonene-in-water emulsion droplets produced by microchannel emulsification. Food Hydrocolloids, 2016, 60, 98-108.	10.7	17
78	Effect of esterified oligosaccharides on the formation and stability of oil-in-water emulsions. Carbohydrate Polymers, 2016, 143, 44-50.	10.2	17
79	Preparation characteristics of monodisperse oil-in-water emulsions by microchannel emulsification using different essential oils. LWT - Food Science and Technology, 2017, 84, 617-625.	5.2	17
80	Formulation and characterization of food grade waterâ€inâ€oil emulsions encapsulating mixture of essential amino acids. European Journal of Lipid Science and Technology, 2017, 119, 1600202.	1.5	17
81	Influence of temperature on production of water-in-oil emulsions by microchannel emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411, 50-59.	4.7	16
82	Preparation of monodisperse O/W emulsions using a crude surface-active extract from argan by-products in microchannel emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124050.	4.7	16
83	In Vitro Gastrointestinal Digestibility of Soybean Oil-in-Water Emulsion Droplets Stabilized by Polyglycerol Esters of Fatty Acid. Food Science and Technology Research, 2012, 18, 149-156.	0.6	15
84	Formulation of monodisperse water-in-oil emulsions encapsulating calcium ascorbate and ascorbic acid 2-glucoside by microchannel emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 247-253.	4.7	15
85	Efficient Encapsulation of a Waterâ€Soluble Molecule into Lipid Vesicles Using W/O/W Multiple Emulsions via Solvent Evaporation. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 421-430.	1.9	15
86	Direct observation and characterization of the generation of organic solvent droplets with and without triglyceride oil by electrospraying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 937-943.	4.7	14
87	Preparation and characterization of highly stable monodisperse argan oilâ€inâ€water emulsions using microchannel emulsification. European Journal of Lipid Science and Technology, 2013, 115, 224-231.	1.5	13
88	Formulation of W/O/W emulsions loaded with short-chain fatty acid and their stability improvement by layer-by-layer deposition using dietary fibers. LWT - Food Science and Technology, 2017, 76, 344-350.	5.2	13
89	Potential of bagasse obtained using hydrothermal liquefaction preâ€ŧreatment as a natural emulsifier. International Journal of Food Science and Technology, 2020, 55, 1485-1496.	2.7	13
90	Development and Fundamental Characteristics of a Human Gastric Digestion Simulator for Analysis of Food Disintegration. Japan Agricultural Research Quarterly, 2017, 51, 17-25.	0.4	12

#	Article	IF	CITATIONS
91	Effects of waterâ€soluble soybean polysaccharide on rheological properties, stability and lipid digestibility of oilâ€inâ€water emulsion during <i>in vitro</i> gastrointestinal digestion. International Journal of Food Science and Technology, 2020, 55, 1437-1447.	2.7	12
92	Oilâ€inâ€water emulsions containing tamarind seed gum during <i>in vitro</i> gastrointestinal digestion: rheological properties, stability, and lipid digestibility. Journal of the Science of Food and Agriculture, 2020, 100, 2473-2481.	3.5	12
93	<i>In vitro</i> bioaccessibility of ergocalciferol in nanoemulsionâ€based delivery system: the influence of foodâ€grade emulsifiers with different stabilising mechanisms. International Journal of Food Science and Technology, 2018, 53, 430-440.	2.7	12
94	Monodisperse aqueous microspheres encapsulating high concentration of <scp>l</scp> -ascorbic acid: insights of preparation and stability evaluation from straight-through microchannel emulsification. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1852-1859.	1.3	11
95	Encapsulation of cholecalciferol and ergocalciferol in oil-in-water emulsions by different homogenization techniques. European Journal of Lipid Science and Technology, 2017, 119, 1600247.	1.5	11
96	Effect of hydrogel particle mechanical properties on their disintegration behavior using a gastric digestion simulator. Food Hydrocolloids, 2021, 110, 106166.	10.7	10
97	Influence of electrolyte concentration on microchannel oil-in-water emulsification using differently charged surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440, 79-86.	4.7	9
98	Formulation and characterization of esterified xylo-oligosaccharides-stabilized oil-in-water emulsions using microchannel emulsification. Colloids and Surfaces B: Biointerfaces, 2016, 148, 333-342.	5.0	9
99	Asymmetrical Microchannel Emulsification Plates for Production of Smallâ€6ized Monodispersed Emulsion Droplets. Chemical Engineering and Technology, 2017, 40, 2351-2355.	1.5	9
100	Effects of Channel and Operation Parameters on Emulsion Production Using Oblong Straight-Through Microchannels. Japan Journal of Food Engineering, 2009, 10, 69-75.	0.3	8
101	Generation of Geometrically Confined Droplets Using Microchannel Arrays: Effects of Channel and Step Structure. Industrial & Engineering Chemistry Research, 2009, 48, 8848-8855.	3.7	8
102	Analysis of Disintegration of Agar Gel Particles with Different Textures using Gastric Digestion Simulator. Japan Journal of Food Engineering, 2015, 16, 161-166.	0.3	8
103	Simulation of oleuropein structural conformation in vacuum, water and triolein–water systems using molecular dynamics. Food Research International, 2016, 88, 79-90.	6.2	8
104	Formulation and characterization of oil-in-water emulsions stabilized by gelatinized kudzu starch. International Journal of Food Properties, 0, , 1-13.	3.0	8
105	Preparation of monodisperse aqueous microspheres containing high concentration of <scp>l</scp> -ascorbic acid by microchannel emulsification. Journal of Microencapsulation, 2015, 32, 570-577.	2.8	7
106	Formulation of Uniform-sized Agar Gel Microbeads from Water-in-oil Emulsion Prepared Using Microchannel Emulsification under Controlled Temperature. Japan Journal of Food Engineering, 2016, 17, 11-19.	0.3	7
107	Effects of surface treatment and storage conditions of silicon microchannel emulsification plates on their surface hydrophilicity and preparation of soybean oil-in-water emulsion droplets. Journal of Food Engineering, 2015, 167, 106-113.	5.2	6
108	Generation Characteristics of Highly Uniform Nonspherical Droplets of Soybean Oil Using Microchannel Array Devices. Food Biophysics, 2008, 3, 132-139.	3.0	5

Isao Kobayashi

#	Article	IF	CITATIONS
109	Long-Term Continuous Production of Soybean Oil-in-Water Emulsions by Microchannel Emulsification. Food Science and Technology Research, 2013, 19, 995-1001.	0.6	5
110	Formulation and Evaluation of a Satiety-inducing Carbonated Beverage that Forms a Bubble-containing Gel in the Stomach. Food Science and Technology Research, 2018, 24, 435-442.	0.6	5
111	Preparation of monodisperse W/O emulsions using a stainless-steel microchannel emulsification chip. Particulate Science and Technology, 2019, 37, 68-73.	2.1	5
112	Asymmetric straight-through microchannel arrays made of aluminum for producing monodisperse O/W emulsions. Particulate Science and Technology, 2020, 38, 747-755.	2.1	5
113	Effects of Esterified Maltodextrin on In Vitro Gastrointestinal Digestibility of Tween 80 tabilized Oilâ€inâ€water Emulsion. European Journal of Lipid Science and Technology, 2020, 122, 2000066.	1.5	5
114	Stability characteristics of O/W emulsions prepared using purified glycyrrhizin or a non-purified glycyrrhizin-rich extract from liquorice root (Glycyrrhiza glabra). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126006.	4.7	5
115	FORMULATION OF LIPID MICRO/NANODISPERSION SYSTEMS. , 2012, , 95-134.		4
116	Emulsifying Performance of Crude Surface-Active Extracts from Liquorice Root (Glycyrrhiza Glabra). ACS Food Science & Technology, 2021, 1, 1472-1480.	2.7	4
117	Formulation and storage stability of baicalein-loaded oil-in-water emulsions. European Journal of Lipid Science and Technology, 2013, 115, n/a-n/a.	1.5	3
118	Pasteurization of Packed Tofu by Radio Frequency Heating. Journal of the Japanese Society for Food Science and Technology, 2015, 62, 541-546.	0.1	3
119	Microchannel Emulsification and Improvement of the Stability of Food-Grade Monodisperse Emulsion Droplets through Layer-by-layer Deposition. Japan Journal of Food Engineering, 2015, 16, 89-96.	0.3	3
120	Handmade microfluidic device for biochemical applications in emulsion. Journal of Bioscience and Bioengineering, 2016, 121, 471-476.	2.2	3
121	<i>In vitro</i> Digestion of Oil-containing Hydrogels Using Gastric Digestion Simulator: a Model Analysis for Oil Release Control inside Human Stomach. Japan Journal of Food Engineering, 2018, 19, 89-101.	0.3	3
122	Enhancing the Formation and Stability of Oil-In-Water Emulsions Prepared by Microchannels Using Mixed Protein Emulsifiers. Frontiers in Nutrition, 0, 9, .	3.7	3
123	Visualization and Evaluation of Disintegration of Food Particles Using a Human Gastric Digestion Simulator. Journal of the Japanese Society for Food Science and Technology, 2018, 65, 543-551.	0.1	1
124	Formulation characteristics of monodisperse structured lipid microparticles using microchannel emulsification. Particulate Science and Technology, 2022, 40, 196-206.	2.1	1
125	Development and CFD Analysis of Asymmetric Straight-through Microchannel Emulsification. Japan Journal of Food Engineering, 2013, 14, 147-154.	0.3	1
126	Formulation and stability evaluation of water-in-fat and water-in-oil emulsions loaded with short-chain fatty acid. Particulate Science and Technology, 2020, 38, 647-651.	2.1	0

#	Article	IF	CITATIONS
127	Microchannel Emulsification. , 2015, , 1-3.		0
128	Microchannel Emulsification. Contemporary Food Engineering, 2015, , 209-234.	0.2	0
129	Effects of the Type of Pectin and Concentration of Citric Acid on Digestive Behavior of a Bubble-containing Gel: Evaluation Using a Human Gastric Digestion Simulator. Japan Journal of Food Engineering, 2019, 20, 53-60.	0.3	0