Kolja Eppert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1946157/publications.pdf

Version: 2024-02-01

		840776	1125743	
16	1,951	11	13	
papers	citations	h-index	g-index	
17	17	17	4463	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Stem cell gene expression programs influence clinical outcome in human leukemia. Nature Medicine, 2011, 17, 1086-1093.	30.7	894
2	The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature, 2014, 510, 268-272.	27.8	292
3	miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell, 2016, 29, 214-228.	16.8	216
4	GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood, 2016, 127, 2018-2027.	1.4	148
5	Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene, 1999, 18, 783-788.	5.9	146
6	Reduced Lymphoid Lineage Priming Promotes Human Hematopoietic Stem Cell Expansion. Cell Stem Cell, 2014, 14, 94-106.	11.1	63
7	Leukemic stem cell signatures identify novel therapeutics targeting acute myeloid leukemia. Blood Cancer Journal, 2018, 8, 52.	6.2	55
8	Mutant H3 histones drive human pre-leukemic hematopoietic stem cell expansion and promote leukemic aggressiveness. Nature Communications, 2019, 10, 2891.	12.8	36
9	CD200 expression marks leukemia stem cells in human AML. Blood Advances, 2020, 4, 5402-5413.	5.2	31
10	Mechanisms and Antitumor Activity of a Binary EGFR/DNAâ€"Targeting Strategy Overcomes Resistance of Glioblastoma Stem Cells to Temozolomide. Clinical Cancer Research, 2019, 25, 7594-7608.	7.0	28
11	Heart failure drug proscillaridin A targets MYC overexpressing leukemia through global loss of lysine acetylation. Journal of Experimental and Clinical Cancer Research, 2019, 38, 251.	8.6	27
12	Complement cascade gene expression defines novel prognostic subgroups of acute myeloid leukemia. Experimental Hematology, 2016, 44, 1039-1043.e10.	0.4	12
13	CD200 Is a Marker of LSC Activity in Acute Myeloid Leukemia. Blood, 2016, 128, 1705-1705.	1.4	1
14	G Protein-Coupled Receptor 56 As a Potential Regulator of Normal and Leukemic Stem Cells. Blood, 2015, 126, 4267-4267.	1.4	0
15	High-Throughput Chemical Screen on Acute Myeloid Leukemia Stem Cells Identifies Novel Anti-LSC Compounds. Blood, 2021, 138, 1871-1871.	1.4	0
16	Single-Cell Transcriptomic Profiling of De Novo and Relapsed Acute Myeloid Leukemia Identifies a Leukemic Stemness Program Shared across Diverse Phenotypes. Blood, 2020, 136, 1-1.	1.4	0