Arun K Kota

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1946115/arun-k-kota-publications-by-year.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 4,054 52 53 g-index h-index citations papers 8.3 5.69 4,552 53 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
52	Continuous Liquid-Liquid Extraction and in-Situ Membrane Separation of Miscible Liquid Mixtures. <i>Langmuir</i> , 2021 , 37, 13595-13601	4	
51	Design and application of a self-pumping microfluidic staggered herringbone mixer. <i>Microfluidics and Nanofluidics</i> , 2021 , 25, 1	2.8	3
50	Impact of superhydrophobicity on the fluid dynamics of a bileaflet mechanical heart valve. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020 , 110, 103895	4.1	4
49	Dropwise condensation on solid hydrophilic surfaces. <i>Science Advances</i> , 2020 , 6, eaax0746	14.3	68
48	Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method. <i>Langmuir</i> , 2020 , 36, 13860-13871	4	1
47	Elucidating the Trade-off between Membrane Wetting Resistance and Water Vapor Flux in Membrane Distillation. <i>Environmental Science & Environmental Sc</i>	10.3	18
46	Elucidating mechanisms of silica scaling in membrane distillation: effects of membrane surface wettability. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 2004-2014	4.2	13
45	Superomniphobic Papers for On-Paper pH Sensors. Advanced Materials Interfaces, 2019, 6, 1900232	4.6	9
44	Hemocompatibility of Super-Repellent surfaces: Current and Future. <i>Materials Horizons</i> , 2019 , 6, 1596-	161404	15
43	Trade-off in membrane distillation with monolithic omniphobic membranes. <i>Nature Communications</i> , 2019 , 10, 3220	17.4	56
42	Superomniphobic Surfaces with Improved Mechanical Durability: Synergy of Hierarchical Texture and Mechanical Interlocking. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900538	4.6	9
41	Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2019 , 21, 102046	6	11
40	Droplet Jumping: Effects of Droplet Size, Surface Structure, Pinning, and Liquid Properties. <i>ACS Nano</i> , 2019 , 13, 1309-1323	16.7	64
39	An experimental study on soft PDMS materials for aircraft icing mitigation. <i>Applied Surface Science</i> , 2018 , 447, 599-609	6.7	49
38	An Experimental Investigation on the Dynamic Impact of Water Droplets onto Soft Surfaces at High Weber Numbers 2018 ,		3
37	Antibacterial activity on superhydrophobic titania nanotube arrays. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 166, 179-186	6	46
36	Superhydrophobic Coatings for Improved Performance of Electrical Insulators. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1800313	3.9	8

(2013-2018)

35	Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture. <i>Science Advances</i> , 2018 , 4, eaau3488	14.3	62
34	Hemodynamic Performance and Thrombogenic Properties of a Superhydrophobic Bileaflet Mechanical Heart Valve. <i>Annals of Biomedical Engineering</i> , 2017 , 45, 452-463	4.7	32
33	A Miniature Water Surface Jumping Robot. <i>IEEE Robotics and Automation Letters</i> , 2017 , 2, 1272-1279	4.2	9
32	Metamorphic Superomniphobic Surfaces. <i>Advanced Materials</i> , 2017 , 29, 1700295	24	88
31	Hemocompatibility of Superhemophobic Titania Surfaces. Advanced Healthcare Materials, 2017, 6, 1600) 7:1/7. 1	55
30	Superhemophobic titania nanotube array surfaces for blood contacting medical devices. <i>RSC Advances</i> , 2017 , 7, 35466-35476	3.7	20
29	Fabrication of Nanostructured Omniphobic and Superomniphobic Surfaces with Inexpensive CO Laser Engraver. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 25656-25661	9.5	40
28	Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces. <i>ACS Applied Materials & Description of Droplets on Superomniphobic Surfaces. <i>ACS Applied Materials & Description of Materials & Description of Materials & Description of Materials & Description of Droplets on Superomniphobic Surfaces. <i>ACS Applied Materials & Description of </i></i></i>	9.5	32
27	Response to "Correspondence Concerning Hemocompatibility of Superhemophobic Titania Surfaces". <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700647	10.1	8
26	Metallic superhydrophobic surfaces via thermal sensitization. <i>Applied Physics Letters</i> , 2017 , 110, 251602	2 3.4	21
25	Free-Standing, Flexible, Superomniphobic Films. ACS Applied Materials & amp; Interfaces, 2016, 8, 21962	-7 9.5	50
24	Durable gels with ultra-low adhesion to ice. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18253-18258	13	120
23	Superhydrophobic Coatings with Edible Materials. ACS Applied Materials & amp; Interfaces, 2016, 8, 1866	54 ₉ 85	136
22	Tunable superomniphobic surfaces for sorting droplets by surface tension. <i>Lab on A Chip</i> , 2016 , 16, 320	4 79 2	34
21	Wettability engendered templated self-assembly (WETS) for fabricating multiphasic particles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 4075-80	9.5	20
20	The design and applications of superomniphobic surfaces. NPG Asia Materials, 2014, 6, e109-e109	10.3	241
19	Amphiphilic colloidal surfactants based on electrohydrodynamic co-jetting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 11281-7	9.5	21
18	Superomniphobic surfaces for effective chemical shielding. <i>Journal of the American Chemical Society</i> , 2013 , 135, 578-81	16.4	388

17	Superoleophobic surfaces: design criteria and recent studies. Surface Innovations, 2013, 1, 71-83	1.9	59
16	Superomniphobic surfaces: Design and durability. <i>MRS Bulletin</i> , 2013 , 38, 383-390	3.2	133
15	Superoleophobic Surfaces: Hierarchically Structured Superoleophobic Surfaces with Ultralow Contact Angle Hysteresis (Adv. Mater. 43/2012). <i>Advanced Materials</i> , 2012 , 24, 5837-5837	24	10
14	Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. <i>Advanced Materials</i> , 2012 , 24, 5838-43	24	261
13	Patterned SuperomniphobicBuperomniphilic Surfaces: Templates for Site-Selective Self-Assembly. Angewandte Chemie, 2012 , 124, 10256-10260	3.6	14
12	Superoleophobic Surfaces. ACS Symposium Series, 2012, 171-185	0.4	13
11	Hygro-responsive membranes for effective oil-water separation. <i>Nature Communications</i> , 2012 , 3, 1025	17.4	884
10	On-demand separation of oil-water mixtures. <i>Advanced Materials</i> , 2012 , 24, 3666-71	24	428
9	Micellar Morphology in Sulfonated Pentablock Copolymer Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 12093-12097	3.9	39
8	Characterization of Quasi-static Mechanical Properties of Polymer Nanocomposites Using a New Combinatorial Approach. <i>Journal of Composite Materials</i> , 2009 , 43, 2587-2598	2.7	5
7	Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. <i>Polymer</i> , 2008 , 49, 4846-4851	3.9	138
6	Characterization of processing effects in HIPS-CNF composites using thermogravimetric analysis. <i>Polymer Engineering and Science</i> , 2008 , 48, 1120-1125	2.3	2
5	Combinatorial development of polymer nanocomposites using transient processing conditions in twin screw extrusion. <i>AICHE Journal</i> , 2008 , 54, 1895-1900	3.6	3
4	Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes. <i>Nanotechnology</i> , 2007 , 18, 505705	3.4	31
3	Electrical and Rheological Percolation in Polystyrene/MWCNT Nanocomposites. <i>Macromolecules</i> , 2007 , 40, 7400-7406	5.5	251
2	Influence of oxygen, hydrogen, helium, argon and vacuum on the surface behavior of molten InSb, other semiconductors, and metals on silica. <i>Journal of Crystal Growth</i> , 2006 , 290, 319-333	1.6	6
1	Fabrication of Particle-Reinforced Polymers with Continuous Gradient Architectures Using Twin Screw Extrusion Process. <i>Journal of Composite Materials</i> , 2004 , 38, 1873-1893	2.7	12