Dong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/194607/publications.pdf Version: 2024-02-01

DONG WANG

#	Article	IF	CITATIONS
1	Effect of hydrogen on nanomechanical properties in Fe-22Mn-0.6C TWIP steel revealed by in-situ electrochemical nanoindentation. Acta Materialia, 2019, 166, 618-629.	7.9	57
2	Effect of electrochemical charging on the hydrogen embrittlement susceptibility of alloy 718. Acta Materialia, 2019, 179, 36-48.	7.9	55
3	Current Challenges and Opportunities Toward Understanding Hydrogen Embrittlement Mechanisms in Advanced High-Strength Steels: A Review. Acta Metallurgica Sinica (English Letters), 2021, 34, 741-754.	2.9	54
4	On the hydrogen embrittlement behavior of nickel-based alloys: Alloys 718 and 725. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139785.	5.6	44
5	Insight into hydrogen effect on a duplex medium-Mn steel revealed by in-situ nanoindentation test. International Journal of Hydrogen Energy, 2019, 44, 20545-20551.	7.1	37
6	In-situ observation of martensitic transformation in an interstitial metastable high-entropy alloy during cathodic hydrogen charging. Scripta Materialia, 2019, 173, 56-60.	5.2	35
7	Effect of hydrogen-induced surface steps on the nanomechanical behavior of a CoCrFeMnNi high-entropy alloy revealed by in-situ electrochemical nanoindentation. Intermetallics, 2019, 114, 106605.	3.9	30
8	Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test. Journal of Materials Science and Technology, 2021, 67, 243-253.	10.7	22
9	Effect of hydrogen on the embrittlement susceptibility of Fe–22Mn-0.6C TWIP steel revealed by in-situ tensile tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140638.	5.6	22
10	Hydrogen embrittlement of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy. Corrosion Science, 2022, 195, 110007.	6.6	21
11	Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation. Journal of Materials Science and Technology, 2022, 98, 118-122.	10.7	15
12	The effect of hydrogen on the crack initiation site of TRIP-assisted steels during in-situ hydrogen plasma micro-tensile testing: Leading to an improved ductility?. Materials Characterization, 2020, 167, 110493.	4.4	14
13	Probing hydrogen effect on nanomechanical properties of X65 pipeline steel using in-situ electrochemical nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141819.	5.6	11
14	Hydrogen diffusion and trapping in nickel-based alloy 625: An electrochemical permeation study. Electrochimica Acta, 2022, 421, 140477.	5.2	11
15	Antagonist softening and hardening effects of hydrogen investigated using nanoindentation on cyclically pre-strained nickel single crystal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140480.	5.6	7
16	An In-Situ Electrochemical Nanoindentation (ECNI) Study on the Effect of Hydrogen on the Mechanical Properties of 316L Austenitic Stainless Steel. Materials, 2021, 14, 6426.	2.9	2
17	Reveal Hydrogen Behavior at Grain Boundaries in Fe–22Mn–0.6C TWIP Steel via In Situ Micropillar Compression Test. Acta Metallurgica Sinica (English Letters), 2023, 36, 1095-1104.	2.9	2