Zhenqing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1945641/publications.pdf

Version: 2024-02-01

623734 677142 43 568 14 22 citations g-index h-index papers 45 45 45 545 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A continuous flow PCR array microfluidic chip applied for simultaneous amplification of target genes of periodontal pathogens. Lab on A Chip, 2022, 22, 733-737.	6.0	21
2	A Tropical Cyclone Center Location Method Based on Satellite Image. Computational Intelligence and Neuroscience, 2022, 2022, 1-12.	1.7	1
3	High throughput DNA concentration determination system based on fluorescence technology. Sensors and Actuators B: Chemical, 2021, 328, 128904.	7.8	7
4	A rapid nucleic acid concentration measurement system with large field of view for a droplet digital PCR microfluidic chip. Lab on A Chip, 2021, 21, 3742-3747.	6.0	26
5	Emerging optofluidic technologies for biodiagnostic applications. View, 2021, 2, 20200035.	5.3	9
6	A portable instrument for on-site detection of heavy metal ions in water. Analytical and Bioanalytical Chemistry, 2021, 413, 3471-3477.	3.7	14
7	Capillary electrophoresis of DNA with high resolution based on copoly(pentaerythritoltetra) Tj ETQq1 1 0.784314 338811.	rgBT /Over 5.4	erlock 10 Tf S 5
8	An evidence update on the protective mechanism of tangeretin against neuroinflammation based on network pharmacology prediction and transcriptomic analysis. European Journal of Pharmacology, 2021, 906, 174094.	3.5	7
9	Multiplex amplification of target genes of periodontal pathogens in continuous flow PCR microfluidic chip. Lab on A Chip, 2021, 21, 3159-3164.	6.0	20
10	Separation of proteins by square-wave pulsed field and inversion field capillary electrophoresis. Journal of the Taiwan Institute of Chemical Engineers, 2021, , .	5.3	0
11	Design and fabrication of portable continuous flow PCR microfluidic chip for DNA replication. Biomedical Microdevices, 2020, 22, 5.	2.8	19
12	Highâ€Performance Sieving Electrophoresis for Singleâ€Nucleotide Polymorphisms with a Structuring Hydrogel Network. Macromolecular Chemistry and Physics, 2020, 221, 1900385.	2.2	3
13	Separation of subcellular fluorescent microspheres by capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2020, 412, 1871-1877.	3.7	1
14	All-in-one microfluidic device for on-site diagnosis of pathogens based on an integrated continuous flow PCR and electrophoresis biochip. Lab on A Chip, 2019, 19, 2663-2668.	6.0	67
15	Alignment and counting of mitochondria based on capillary electrophoresis. Sensors and Actuators B: Chemical, 2018, 265, 110-114.	7.8	13
16	Factors affecting the separation performance of proteins in capillary electrophoresis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1083, 63-67.	2.3	13
17	Miniaturized gel electrophoresis system for fast separation of nucleic acids. Sensors and Actuators B: Chemical, 2018, 254, 153-158.	7.8	15
18	The effect of electrophoretic parameters on separation performance of short DNA fragments. Analytical Biochemistry, 2018, 556, 99-103.	2.4	4

#	Article	IF	CITATIONS
19	Real-time Tracking of DNA Fragment Separation by Smartphone. Journal of Visualized Experiments, 2017,	0.3	1
20	Gene analysis of multiple oral bacteria by the polymerase chain reaction coupled with capillary polymer electrophoresis. Journal of Separation Science, 2016, 39, 986-992.	2.5	6
21	Capillary electrophoresis of RNA in hydroxyethylcellulose polymer with various molecular weights. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1011, 114-120.	2.3	10
22	Analysis of the inhibition of nucleic acid dyes on polymerase chain reaction by capillary electrophoresis. Analytical Methods, 2016, 8, 2330-2334.	2.7	5
23	The development of a portable buoyancy-driven PCR system and its evaluation by capillary electrophoresis. Sensors and Actuators B: Chemical, 2016, 230, 779-784.	7.8	49
24	Analysis of small interfering RNA by capillary electrophoresis in hydroxyethylcellulose solutions. Electrophoresis, 2015, 36, 1651-1657.	2.4	8
25	Polyethylene Oxide (PEO) and Polyethylene Glycol (PEG) Polymer Sieving Matrix for RNA Capillary Electrophoresis. PLoS ONE, 2015, 10, e0123406.	2.5	8
26	Electrophoresis of periodontal pathogens in poly(ethyleneoxide) solutions with uncoated capillary. Analytical Biochemistry, 2015, 471, 70-72.	2.4	8
27	The photovoltaic properties of novel narrow band gap Cu ₂ SnS ₃ films prepared by a spray pyrolysis method. RSC Advances, 2015, 5, 28885-28891.	3.6	40
28	Electromigration behavior of nucleic acids in capillary electrophoresis under pulsed-field conditions. Journal of Chromatography A, 2014, 1331, 100-107.	3.7	14
29	Study on the photovoltaic property of Cu4SnS4 synthesized by mechanochemical process. Optik, 2014, 125, 3217-3220.	2.9	26
30	Determination and quantification of Escherichia coli by capillary electrophoresis. Analyst, The, 2014, 139, 6113-6117.	3 . 5	11
31	Capillary electrophoresis of a wide range of DNA fragments in a mixed solution of hydroxyethyl cellulose. Analytical Methods, 2014, 6, 2473-2477.	2.7	10
32	Quantification of Periodontal Pathogens Cell Counts by Capillary Electrophoresis. Journal of Chromatography A, 2014, 1361, 286-290.	3.7	16
33	Capillary Electrophoresis of DNA in Hydroxyethylcellulose. Acta Chimica Sinica, 2013, 71, 265.	1.4	1
34	Doctor-bladed Cu ₂ ZnSnS ₄ light absorption layer for low-cost solar cell application. Chinese Physics B, 2012, 21, 038401.	1.4	19
35	Is pulsed electric field still effective for RNA separation in capillary electrophoresis?. Journal of Chromatography A, 2012, 1229, 274-279.	3.7	12
36	Effect of Electric Field Modes on the Separation Performance of DNA in Capillary Electrophoresis. Acta Chimica Sinica, 2012, 70, 2073.	1.4	1

ZHENQING LI

#	Article	IF	CITATION
37	Separation of long DNA fragments by inversion field capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2011, 401, 1661-1667.	3.7	10
38	Structural, electronic and vibrational properties of indium oxide clusters. Chinese Physics B, 2011, 20, 063101.	1.4	8
39	Printed ethyl cellulose/CulnSe ₂ composite light absorber layer and its photovoltaic effect. Journal Physics D: Applied Physics, 2011, 44, 455401.	2.8	17
40	Acetic acid denaturing pulsed field capillary electrophoresis for RNA separation. Electrophoresis, 2010, 31, 3531-3536.	2.4	16
41	The influence of polymer concentration, applied voltage, modulation depth and pulse frequency on DNA separation by pulsed field CE. Journal of Separation Science, 2010, 33, 2811-2817.	2.5	13
42	Development of a new signal processor for tetralateral position sensitive detector based on single-chip microcomputer. Review of Scientific Instruments, 2006, 77, 083301.	1.3	6
43	Preparation of Cu ₂ ZnSnS ₄ Film by Printing Process for Low-Cost Solar Cell. Advanced Materials Research, 0, 335-336, 1406-1411.	0.3	2