Zhenqing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1945641/publications.pdf Version: 2024-02-01

ZHENOING LI

#	Article	IF	CITATIONS
1	All-in-one microfluidic device for on-site diagnosis of pathogens based on an integrated continuous flow PCR and electrophoresis biochip. Lab on A Chip, 2019, 19, 2663-2668.	6.0	67
2	The development of a portable buoyancy-driven PCR system and its evaluation by capillary electrophoresis. Sensors and Actuators B: Chemical, 2016, 230, 779-784.	7.8	49
3	The photovoltaic properties of novel narrow band gap Cu ₂ SnS ₃ films prepared by a spray pyrolysis method. RSC Advances, 2015, 5, 28885-28891.	3.6	40
4	Study on the photovoltaic property of Cu4SnS4 synthesized by mechanochemical process. Optik, 2014, 125, 3217-3220.	2.9	26
5	A rapid nucleic acid concentration measurement system with large field of view for a droplet digital PCR microfluidic chip. Lab on A Chip, 2021, 21, 3742-3747.	6.0	26
6	A continuous flow PCR array microfluidic chip applied for simultaneous amplification of target genes of periodontal pathogens. Lab on A Chip, 2022, 22, 733-737.	6.0	21
7	Multiplex amplification of target genes of periodontal pathogens in continuous flow PCR microfluidic chip. Lab on A Chip, 2021, 21, 3159-3164.	6.0	20
8	Doctor-bladed Cu ₂ ZnSnS ₄ light absorption layer for low-cost solar cell application. Chinese Physics B, 2012, 21, 038401.	1.4	19
9	Design and fabrication of portable continuous flow PCR microfluidic chip for DNA replication. Biomedical Microdevices, 2020, 22, 5.	2.8	19
10	Printed ethyl cellulose/CuInSe ₂ composite light absorber layer and its photovoltaic effect. Journal Physics D: Applied Physics, 2011, 44, 455401.	2.8	17
11	Acetic acid denaturing pulsed field capillary electrophoresis for RNA separation. Electrophoresis, 2010, 31, 3531-3536.	2.4	16
12	Quantification of Periodontal Pathogens Cell Counts by Capillary Electrophoresis. Journal of Chromatography A, 2014, 1361, 286-290.	3.7	16
13	Miniaturized gel electrophoresis system for fast separation of nucleic acids. Sensors and Actuators B: Chemical, 2018, 254, 153-158.	7.8	15
14	Electromigration behavior of nucleic acids in capillary electrophoresis under pulsed-field conditions. Journal of Chromatography A, 2014, 1331, 100-107.	3.7	14
15	A portable instrument for on-site detection of heavy metal ions in water. Analytical and Bioanalytical Chemistry, 2021, 413, 3471-3477.	3.7	14
16	The influence of polymer concentration, applied voltage, modulation depth and pulse frequency on DNA separation by pulsed field CE. Journal of Separation Science, 2010, 33, 2811-2817.	2.5	13
17	Alignment and counting of mitochondria based on capillary electrophoresis. Sensors and Actuators B: Chemical, 2018, 265, 110-114.	7.8	13
18	Factors affecting the separation performance of proteins in capillary electrophoresis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1083, 63-67.	2.3	13

ZHENQING LI

3

#	Article	IF	CITATIONS
19	Is pulsed electric field still effective for RNA separation in capillary electrophoresis?. Journal of Chromatography A, 2012, 1229, 274-279.	3.7	12
20	Determination and quantification of Escherichia coli by capillary electrophoresis. Analyst, The, 2014, 139, 6113-6117.	3.5	11
21	Separation of long DNA fragments by inversion field capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2011, 401, 1661-1667.	3.7	10
22	Capillary electrophoresis of a wide range of DNA fragments in a mixed solution of hydroxyethyl cellulose. Analytical Methods, 2014, 6, 2473-2477.	2.7	10
23	Capillary electrophoresis of RNA in hydroxyethylcellulose polymer with various molecular weights. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1011, 114-120.	2.3	10
24	Emerging optofluidic technologies for biodiagnostic applications. View, 2021, 2, 20200035.	5.3	9
25	Structural, electronic and vibrational properties of indium oxide clusters. Chinese Physics B, 2011, 20, 063101.	1.4	8
26	Analysis of small interfering RNA by capillary electrophoresis in hydroxyethylcellulose solutions. Electrophoresis, 2015, 36, 1651-1657.	2.4	8
27	Polyethylene Oxide (PEO) and Polyethylene Glycol (PEG) Polymer Sieving Matrix for RNA Capillary Electrophoresis. PLoS ONE, 2015, 10, e0123406.	2.5	8
28	Electrophoresis of periodontal pathogens in poly(ethyleneoxide) solutions with uncoated capillary. Analytical Biochemistry, 2015, 471, 70-72.	2.4	8
29	High throughput DNA concentration determination system based on fluorescence technology. Sensors and Actuators B: Chemical, 2021, 328, 128904.	7.8	7
30	An evidence update on the protective mechanism of tangeretin against neuroinflammation based on network pharmacology prediction and transcriptomic analysis. European Journal of Pharmacology, 2021, 906, 174094.	3.5	7
31	Development of a new signal processor for tetralateral position sensitive detector based on single-chip microcomputer. Review of Scientific Instruments, 2006, 77, 083301.	1.3	6
32	Gene analysis of multiple oral bacteria by the polymerase chain reaction coupled with capillary polymer electrophoresis. Journal of Separation Science, 2016, 39, 986-992.	2.5	6
33	Analysis of the inhibition of nucleic acid dyes on polymerase chain reaction by capillary electrophoresis. Analytical Methods, 2016, 8, 2330-2334.	2.7	5
34	Capillary electrophoresis of DNA with high resolution based on copoly(pentaerythritoltetra) Tj ETQq0 0 0 rgBT /0 338811.	Overlock 1 5.4	0 Tf 50 147 1 5
35	The effect of electrophoretic parameters on separation performance of short DNA fragments. Analytical Biochemistry, 2018, 556, 99-103.	2.4	4

Highâ€Performance Sieving Electrophoresis for Singleâ€Nucleotide Polymorphisms with a Structuring
Hydrogel Network. Macromolecular Chemistry and Physics, 2020, 221, 1900385.

ZHENQING LI

#	Article	IF	CITATIONS
37	Preparation of Cu ₂ ZnSnS ₄ Film by Printing Process for Low-Cost Solar Cell. Advanced Materials Research, 0, 335-336, 1406-1411.	0.3	2
38	Real-time Tracking of DNA Fragment Separation by Smartphone. Journal of Visualized Experiments, 2017, , .	0.3	1
39	Separation of subcellular fluorescent microspheres by capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2020, 412, 1871-1877.	3.7	1
40	Effect of Electric Field Modes on the Separation Performance of DNA in Capillary Electrophoresis. Acta Chimica Sinica, 2012, 70, 2073.	1.4	1
41	Capillary Electrophoresis of DNA in Hydroxyethylcellulose. Acta Chimica Sinica, 2013, 71, 265.	1.4	1
42	A Tropical Cyclone Center Location Method Based on Satellite Image. Computational Intelligence and Neuroscience, 2022, 2022, 1-12.	1.7	1
43	Separation of proteins by square-wave pulsed field and inversion field capillary electrophoresis. Journal of the Taiwan Institute of Chemical Engineers, 2021, , .	5.3	0