
Surachai Supattapone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1945510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SEC24A facilitates colocalization and Ca2+ flux between the endoplasmic reticulum and mitochondria. Journal of Cell Science, 2021, 134, .	2.0	3
2	Hydrogen Peroxide-induced Cell Death in Mammalian Cells. , 2021, 2, 206-211.		5
3	Alternating anti-prion regimens reduce combination drug resistance but do not further extend survival in scrapie-infected mice. Journal of General Virology, 2021, 102, .	2.9	2
4	Cofactor molecules: Essential partners for infectious prions. Progress in Molecular Biology and Translational Science, 2020, 175, 53-75.	1.7	16
5	A Genome-Wide CRISPR/Cas9 Screen Reveals that Riboflavin Regulates Hydrogen Peroxide Entry into HAP1 Cells. MBio, 2020, 11, .	4.1	8
6	Identification of a homology-independent linchpin domain controlling mouse and bank vole prion protein conversion. PLoS Pathogens, 2020, 16, e1008875.	4.7	9
7	Emergence of prions selectively resistant to combination drug therapy. PLoS Pathogens, 2020, 16, e1008581.	4.7	13
8	Cofactor and glycosylation preferences for in vitroÂprion conversion are predominantly determined by strain conformation. PLoS Pathogens, 2020, 16, e1008495.	4.7	27
9	Title is missing!. , 2020, 16, e1008875.		0
10	Title is missing!. , 2020, 16, e1008875.		0
11	Title is missing!. , 2020, 16, e1008875.		0
12	Title is missing!. , 2020, 16, e1008875.		0
13	Title is missing!. , 2020, 16, e1008875.		0
14	Title is missing!. , 2020, 16, e1008875.		0
15	Title is missing!. , 2020, 16, e1008495.		0
16	Title is missing!. , 2020, 16, e1008495.		0
17	Title is missing!. , 2020, 16, e1008495.		0

2

0

SURACHAI SUPATTAPONE

#	Article	IF	CITATIONS
19	Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathogens, 2019, 15, e1007662.	4.7	30
20	Rescue of Transgenic Alzheimer's Pathophysiology by Polymeric Cellular Prion Protein Antagonists. Cell Reports, 2019, 26, 145-158.e8.	6.4	27
21	SEC24A identified as an essential mediator of thapsigargin-induced cell death in a genome-wide CRISPR/Cas9 screen. Cell Death Discovery, 2018, 4, 115.	4.7	13
22	Comparative Analysis of Mutant Huntingtin Binding Partners in Yeast Species. Scientific Reports, 2018, 8, 9554.	3.3	6
23	Interallelic Transcriptional Enhancement as an <i>in Vivo</i> Measure of Transvection in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3139-3148.	1.8	6
24	CAG Expansions Are Genetically Stable and Form Nontoxic Aggregates in Cells Lacking Endogenous Polyglutamine Proteins. MBio, 2016, 7, .	4.1	10
25	Dissociation of recombinant prion autocatalysis from infectivity. Prion, 2015, 9, 405-411.	1.8	2
26	Requirements for Mutant and Wild-Type Prion Protein Misfolding In Vitro. Biochemistry, 2015, 54, 1180-1187.	2.5	20
27	Expanding the prion disease repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11748-11749.	7.1	4
28	A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers. PLoS Pathogens, 2015, 11, e1005017.	4.7	38
29	Elucidating the role of cofactors in mammalian prion propagation. Prion, 2014, 8, 100-105.	1.8	29
30	Synthesis of High Titer Infectious Prions with Cofactor Molecules. Journal of Biological Chemistry, 2014, 289, 19850-19854.	3.4	42
31	Cofactor Involvement in Prion Propagation. , 2013, , 93-105.		0
32	Cofactor Molecules Induce Structural Transformation during Infectious Prion Formation. Structure, 2013, 21, 2061-2068.	3.3	64
33	Phosphatidylethanolamine as a prion cofactor. Prion, 2012, 6, 417-419.	1.8	13
34	Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8546-8551.	7.1	211
35	NON-REDUCING ALKALINE SOLUBILIZATION AND RAPID ON-COLUMN REFOLDING OF RECOMBINANT PRION PROTEIN. Preparative Biochemistry and Biotechnology, 2012, 42, 77-86.	1.9	3
36	Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1938-46.	7.1	168

SURACHAI SUPATTAPONE

#	Article	IF	CITATIONS
37	Seeding Specificity and Ultrastructural Characteristics of Infectious Recombinant Prions. Biochemistry, 2011, 50, 7111-7116.	2.5	44
38	Photodegradation illuminates the role of polyanions in prion infectivity. Prion, 2011, 5, 49-51.	1.8	8
39	In Situ Photodegradation of Incorporated Polyanion Does Not Alter Prion Infectivity. PLoS Pathogens, 2011, 7, e1002001.	4.7	20
40	Dissociation of Infectivity from Seeding Ability in Prions with Alternate Docking Mechanism. PLoS Pathogens, 2011, 7, e1002128.	4.7	43
41	What Makes a Prion Infectious?. Science, 2010, 327, 1091-1092.	12.6	26
42	Species-Dependent Differences in Cofactor Utilization for Formation of the Protease-Resistant Prion Protein in Vitro. Biochemistry, 2010, 49, 3928-3934.	2.5	85
43	Trans-Dominant Inhibition of Prion Propagation In Vitro Is Not Mediated by an Accessory Cofactor. PLoS Pathogens, 2009, 5, e1000535.	4.7	52
44	Prion Protein Glycosylation Is Not Required for Strain-Specific Neurotropism. Journal of Virology, 2009, 83, 5321-5328.	3.4	59
45	Complex Polyamines: Unique Prion Disaggregating Compounds. CNS and Neurological Disorders - Drug Targets, 2009, 8, 323-328.	1.4	18
46	The effects of prion protein proteolysis and disaggregation on the strain properties of hamster scrapie. Journal of General Virology, 2008, 89, 2642-2650.	2.9	20
47	Transmissible spongiform encephalopathies. , 2008, , 251-262.		0
48	Amplification of Purified Prions In Vitro. Methods in Molecular Biology, 2008, 459, 117-130.	0.9	5
49	Selective Incorporation of Polyanionic Molecules into Hamster Prions. Journal of Biological Chemistry, 2007, 282, 36341-36353.	3.4	100
50	Formation of native prions from minimal components in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9741-9746.	7.1	579
51	Immunodetection of glycophosphatidylinositol-anchored proteins following treatment with phospholipase C. Analytical Biochemistry, 2007, 363, 318-320.	2.4	14
52	The Stoichiometry of Host PrPC Glycoforms Modulates the Efficiency of PrPSc Formation in Vitro. Biochemistry, 2006, 45, 14129-14139.	2.5	77
53	On the horizon: a blood test for prions. Trends in Microbiology, 2006, 14, 149-151.	7.7	7
54	Copper (II) ions potently inhibit purified PrPres amplification. Journal of Neurochemistry, 2006, 96, 1409-1415.	3.9	53

#	Article	IF	CITATIONS
55	Which criteria best support the diagnosis of W1 sporadic Creutzfeldt–Jakob disease?. Nature Clinical Practice Neurology, 2006, 2, 296-297.	2.5	1
56	Protease-resistant Prion Protein Amplification Reconstituted with Partially Purified Substrates and Synthetic Polyanions. Journal of Biological Chemistry, 2005, 280, 26873-26879.	3.4	177
57	Prion protein conversion in vitro. Journal of Molecular Medicine, 2004, 82, 348-356.	3.9	69
58	In Vitro Prion Protein Conversion in Detergent-Solubilized Membranesâ€. Biochemistry, 2004, 43, 2613-2621.	2.5	24
59	RNA molecules stimulate prion protein conversion. Nature, 2003, 425, 717-720.	27.8	464
60	In VitroAmplification of Protease-Resistant Prion Protein Requires Free Sulfhydryl Groupsâ€. Biochemistry, 2003, 42, 4127-4135.	2.5	88
61	Pharmacological approaches to prion research. Biochemical Pharmacology, 2002, 63, 1383-1388.	4.4	34
62	Branched Polyamines Cure Prion-Infected Neuroblastoma Cells. Journal of Virology, 2001, 75, 3453-3461.	3.4	213
63	Prion Protein of 106 Residues Creates an Artificial Transmission Barrier for Prion Replication in Transgenic Mice. Cell, 1999, 96, 869-878.	28.9	204