Stephen Barlow

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1945288/stephen-barlow-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24,106 146 318 70 h-index g-index citations papers 6.78 26,347 9.6 349 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
318	Hybrid Organic Lead Iodides: Role of Organic Cation Structure in Obtaining 1D Chains of Face-Sharing Octahedra vs 2D Perovskites. <i>Chemistry of Materials</i> , 2022 , 34, 935-946	9.6	2
317	Controlled n-Doping of Naphthalene Diimide-Based Two-Dimensional Polymers. <i>Advanced Materials</i> , 2021 , e2101932	24	5
316	Reactivity of an air-stable dihydrobenzoimidazole n-dopant with organic semiconductor molecules. <i>CheM</i> , 2021 , 7, 1050-1065	16.2	9
315	Electron spin resonance resolves intermediate triplet states in delayed fluorescence. <i>Nature Communications</i> , 2021 , 12, 4532	17.4	9
314	A naphthalene diimide side-chain polymer as an electron-extraction layer for stable perovskite solar cells. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 450-457	7.8	4
313	Persistent Conjugated Backbone and Disordered Lamellar Packing Impart Polymers with Efficient n-Doping and High Conductivities. <i>Advanced Materials</i> , 2021 , 33, e2005946	24	46
312	The Interlayer Method: A Universal Tool for Energy Level Alignment Tuning at Inorganic/Organic Semiconductor Heterojunctions. <i>Advanced Functional Materials</i> , 2021 , 31, 2010174	15.6	11
311	Synthesis, structures, and reactivity of isomers of [RuCp*(1,4-(MeN)CH)]. <i>Dalton Transactions</i> , 2021 , 50, 13020-13030	4.3	0
310	A polymeric bis(di-p-anisylamino)fluorene hole-transport material for stable n-i-p perovskite solar cells. <i>New Journal of Chemistry</i> , 2021 , 45, 15017-15021	3.6	1
309	Understanding how Lewis acids dope organic semiconductors: a "complex" story. <i>Chemical Science</i> , 2021 , 12, 7012-7022	9.4	11
308	Disentangling Bulk and Interface Phenomena in a Molecularly Doped Polymer Semiconductor. <i>Advanced Optical Materials</i> , 2021 , 9, 2002039	8.1	1
307	High-Efficiency Ion-Exchange Doping of Conducting Polymers. Advanced Materials, 2021, e2102988	24	16
306	Nanosecond-Pulsed Perovskite Light-Emitting Diodes at High Current Density. <i>Advanced Materials</i> , 2021 , 33, e2104867	24	6
305	Benzocyclobutene polymer as an additive for a benzocyclobutene-fullerene: application in stable plb perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9347-9353	13	2
304	Nonlinear photocarrier dynamics and the role of shallow traps in mixed-halide mixed-cation hybrid perovskites. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 8204-8212	7.1	3
303	Highly air-stable, n-doped conjugated polymers achieved by dimeric organometallic dopants. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4105-4111	7.1	3
302	A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 350-356	6.1	10

(2020-2021)

301	Cross-Linking of Doped Organic Semiconductor Interlayers for Organic Solar Cells: Potential and Challenges <i>ACS Applied Energy Materials</i> , 2021 , 4, 14458-14466	6.1	2	
300	Highly Conjugated, Fused-Ring, Quadrupolar Organic Chromophores with Large Two-Photon Absorption Cross-Sections in the Near-Infrared. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 4367-4378	2.8	12	
299	Structural Diversity in 2,2N[Naphthalene-1,8:4,5-bis(dicarboximide)-Ndiyl]-bis(ethylammonium) Iodoplumbates. <i>Inorganic Chemistry</i> , 2020 , 59, 8070-8080	5.1	9	•
298	Thermal Management Enables Bright and Stable Perovskite Light-Emitting Diodes. <i>Advanced Materials</i> , 2020 , 32, e2000752	24	71	
297	Exciton-band tuning induced by the width of the cation in 2D lead iodide perovskite hybrids. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 2023-2028	7.8	4	•
296	Quantitative Analysis of Doping-Induced Polarons and Charge-Transfer Complexes of Poly(3-hexylthiophene) in Solution. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 7694-7708	3.4	22	
295	n-Doping of a Low-Electron-Affinity Polymer Used as an Electron-Transport Layer in Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2000328	15.6	7	
294	Ordered Donor Acceptor Complex Formation and Electron Transfer in Co-deposited Films of Structurally Dissimilar Molecules. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 11023-11031	3.8	3	
293	Optically Pumped Lasing from Hybrid Perovskite Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2020 , 8, 1901297	8.1	27	
292	Surface Functionalization of Black Phosphorus with a Highly Reducing Organoruthenium Complex: Interface Properties and Enhanced Photoresponsivity of Photodetectors. <i>Chemistry - A European Journal</i> , 2020 , 26, 6576-6582	4.8	3	
291	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 783-791	16.4	90	
2 90	Naphthalenediimide Cations Inhibit 2D Perovskite Formation and Facilitate Subpicosecond Electron Transfer. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 24379-24390	3.8	9	
289	New Mechanistic Insights into the Formation of Imine-Linked Two-Dimensional Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18637-18644	16.4	30	
288	UV-to-IR Absorption of Molecularly p-Doped Polythiophenes with Alkyl and Oligoether Side Chains: Experiment and Interpretation Based on Density Functional Theory. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 11280-11293	3.4	24	
287	High Thermoelectric Power Factor of Poly(3-hexylthiophene) through In-Plane Alignment and Doping with a Molybdenum Dithiolene Complex. <i>Macromolecules</i> , 2020 , 53, 6314-6321	5.5	22	
286	Electron transport in a sequentially doped naphthalene diimide polymer. <i>Materials Advances</i> , 2020 , 1, 1829-1834	3.3	9	
285	Thermally Activated Delayed Fluorescence Sensitization for Highly Efficient Blue Fluorescent Emitters. <i>Advanced Functional Materials</i> , 2020 , 30, 2005898	15.6	11	
284	A photo-crosslinkable bis-triarylamine side-chain polymer as a hole-transport material for stable perovskite solar cells. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 190-198	5.8	15	

283	Phosphorescent and TADF polymers and dendrimers in solution-processed self-host organic light-emitting diodes: structure analysis and design perspectives. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1699-1721	7.8	20
282	Degenerate electron-doping in two-dimensional tungsten diselenide with a dimeric organometallic reductant. <i>Materials Today</i> , 2019 , 30, 26-33	21.8	8
281	Understanding the Effects of Molecular Dopant on n-Type Organic Thermoelectric Properties. <i>Advanced Energy Materials</i> , 2019 , 9, 1900817	21.8	77
280	Bis(tercarbazole) pyrene and tetrahydropyrene derivatives: photophysical and electrochemical properties, theoretical modeling, and OLEDs. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5009-5018	7.1	10
279	Host-Free Yellow-Green Organic Light-Emitting Diodes with External Quantum Efficiency over 20% Based on a Compound Exhibiting Thermally Activated Delayed Fluorescence. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 12693-12698	9.5	21
278	(4NPEA)PbI (4NPEA = 4-Nitrophenylethylammonium): Structural, NMR, and Optical Properties of a 3 B Corrugated 2D Hybrid Perovskite. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4521-4525	16.4	29
277	Molecular-Reductant-Induced Control of a GrapheneDrganic Interface for Electron Injection. <i>Chemistry of Materials</i> , 2019 , 31, 6624-6632	9.6	8
276	Phosphonic Acid Modification of the Electron Selective Contact: Interfacial Effects in Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2402-2408	6.1	19
275	Structures of (4-Y-C6H4CH2NH3)2PbI4 {Y = H, F, Cl, Br, I}: Tuning of Hybrid Organic Inorganic Perovskite Structures from Ruddlesden P opper to Dion l acobson Limits. <i>Chemistry of Materials</i> , 2019 , 31, 6145-6153	9.6	36
274	Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. <i>Energy and Environmental Science</i> , 2019 , 12, 3063-3073	35.4	77
273	Charge-Transport Properties of F6TNAP-Based Charge-Transfer Cocrystals. <i>Advanced Functional Materials</i> , 2019 , 29, 1904858	15.6	23
272	Organometallic hydride-transfer agents as reductants for organic semiconductor molecules. <i>Inorganica Chimica Acta</i> , 2019 , 489, 67-77	2.7	3
271	Chemical Stabilities of the Lowest Triplet State in Aryl Sulfones and Aryl Phosphine Oxides Relevant to OLED Applications. <i>Chemistry of Materials</i> , 2019 , 31, 1507-1519	9.6	19
270	Predicting the yield of ion pair formation in molecular electrical doping: redox-potentials versus ionization energy/electron affinity. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13839-13848	7.1	11
269	Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n i perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25796-258	o 1 3	4
268	Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene). <i>ACS Macro Letters</i> , 2019 , 8, 70-76	6.6	39
267	Positional Effects from Bonded Platinum(II) on Intersystem Crossing Rates in Perylenediimide Complexes: Synthesis, Structures, and Photophysical Properties. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13848-13862	3.8	13
266	The role of fluorine-substitution on the Ebridge in constructing effective thermally activated delayed fluorescence molecules. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5536-5541	7.1	24

(2018-2018)

265	Direct Effect of Dielectric Surface Energy on Carrier Transport in Organic Field-Effect Transistors. <i>ACS Applied Materials & ACS Applied & </i>	9.5	24
264	Design of Near-Infrared-Absorbing Unsymmetrical Polymethine Dyes with Large Quadratic Hyperpolarizabilities. <i>Chemistry of Materials</i> , 2018 , 30, 3410-3418	9.6	26
263	A blue thermally activated delayed fluorescence emitter developed by appending a fluorene moiety to a carbazole donor with meta-linkage for high-efficiency OLEDs. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 917-922	7.8	31
262	Non-fullerene acceptors for organic solar cells. <i>Nature Reviews Materials</i> , 2018 , 3,	73.3	1634
261	Electrode Work Function Engineering with Phosphonic Acid Monolayers and Molecular Acceptors: Charge Redistribution Mechanisms. <i>Advanced Functional Materials</i> , 2018 , 28, 1704438	15.6	18
2 60	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using CH Functionalization. <i>Chemistry of Materials</i> , 2018 , 30, 309-313	9.6	65
259	Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. <i>Nano Energy</i> , 2018 , 49, 324-332	17.1	36
258	Controllable, Wide-Ranging n-Doping and p-Doping of Monolayer Group 6 Transition-Metal Disulfides and Diselenides. <i>Advanced Materials</i> , 2018 , 30, e1802991	24	58
257	High performance blue-emitting organic light-emitting diodes from thermally activated delayed fluorescence: A guest/host ratio study. <i>Journal of Applied Physics</i> , 2018 , 124, 055501	2.5	21
256	Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency. <i>Molecular Systems Design and Engineering</i> , 2018 , 3, 741-747	4.6	7
255	Dopant Diffusion in Sequentially Doped Poly(3-hexylthiophene) Studied by Infrared and Photoelectron Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14518-14527	3.8	22
254	Effects of meso-M(PPh3)2Cl (M = Pd, Ni) substituents on the linear and third-order nonlinear optical properties of chalcogenopyrylium-terminated heptamethines in solution and solid states. Journal of Materials Chemistry C, 2018 , 6, 3613-3620	7.1	11
253	Tunable Third-Harmonic Generation from Polaritons in the Ultrastrong Coupling Regime. <i>ACS Photonics</i> , 2018 , 5, 119-125	6.3	53
252	Control of Singlet Emission Energy in a Diphenyloxadiazole Containing Fluorophore Leading To Thermally Activated Delayed Fluorescence. <i>ACS Omega</i> , 2018 , 3, 14918-14923	3.9	4
251	Origin of the E pacing Change upon Doping of Semiconducting Polymers. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 27983-27990	3.8	16
250	Linear and Third-Order Nonlinear Optical Properties of Chalcogenopyrylium-Terminated Heptamethine Dyes with Rigid, Bulky Substituents. <i>Advanced Functional Materials</i> , 2018 , 28, 1804073	15.6	11
249	Hole Transport in Low-Donor-Content Organic Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5496-5501	6.4	28
248	Effect of the Number and Substitution Pattern of Carbazole Donors on the Singlet and Triplet State Energies in a Series of Carbazole-Oxadiazole Derivatives Exhibiting Thermally Activated Delayed Fluorescence. <i>Chemistry of Materials</i> , 2018 , 30, 6389-6399	9.6	14

247	Absorption Tails of Donor:C Blends Provide Insight into Thermally Activated Charge-Transfer Processes and Polaron Relaxation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1699-1704	16.4	55
246	Electron Transport and Nanomorphology in Solution-Processed Polymeric Semiconductor n-Doped with an Air-Stable Organometallic Dimer. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600546	6.4	13
245	Comparison of the Optical and Electrochemical Properties of Bi(perylene diimide)s Linked through Ortho and Bay Positions. <i>ACS Omega</i> , 2017 , 2, 377-385	3.9	33
244	Crystal structure of 5,6-bis(9H-carbazol-9-yl)benzo[c][1,2,5]thiadiazole: distortion from a hypothetical higher-symmetry structure. <i>Acta Crystallographica Section C, Structural Chemistry</i> , 2017 , 73, 319-324	0.8	0
243	Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. <i>Nature Energy</i> , 2017 , 2,	62.3	362
242	Reduction of the Work Function of Gold by N-Heterocyclic Carbenes. <i>Chemistry of Materials</i> , 2017 , 29, 3403-3411	9.6	50
241	Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping. <i>ACS Applied Materials & Doping: Interfaces</i> , 2017 , 9, 20020-20028	9.5	9
240	Facile Doping and Work-Function Modification of Few-Layer Graphene Using Molecular Oxidants and Reductants. <i>Advanced Functional Materials</i> , 2017 , 27, 1602004	15.6	22
239	Intermediate-Sized Conjugated Donor Molecules for Organic Solar Cells: Comparison of Benzodithiophene and Benzobisthiazole-Based Cores. <i>Chemistry of Materials</i> , 2017 , 29, 7880-7887	9.6	14
238	Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step-Deposited Colloidal Quantum Dot Photovoltaics. <i>ACS Energy Letters</i> , 2017 , 2, 1952-1959	20.1	39
237	Doping-induced carrier profiles in organic semiconductors determined from capacitive extraction-current transients. <i>Scientific Reports</i> , 2017 , 7, 5397	4.9	11
236	Solution-Processed Doping of Trilayer WSe2 with Redox-Active Molecules. <i>Chemistry of Materials</i> , 2017 , 29, 7296-7304	9.6	22
235	Efficient and Stable Perovskite Solar Cells Using Molybdenum Tris(dithiolene)s as p-Dopants for Spiro-OMeTAD. <i>ACS Energy Letters</i> , 2017 , 2, 2044-2050	20.1	63
234	Ultrafast Long-Range Charge Separation in Nonfullerene Organic Solar Cells. ACS Nano, 2017 , 11, 1247	3-162 / 18	159
233	High Conductivity in a Nonplanar n-Doped Ambipolar Semiconducting Polymer. <i>Chemistry of Materials</i> , 2017 , 29, 9742-9750	9.6	35
232	Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. <i>Nature Materials</i> , 2017 , 16, 1209-1215	27	120
231	Electric-Field-Controlled Dopant Distribution in Organic Semiconductors. <i>Advanced Materials</i> , 2017 , 29, 1701466	24	21
230	Surface Modification of IndiumII in Oxide with Functionalized Perylene Diimides: Characterization of Orientation, Electron-Transfer Kinetics and Electronic Structure. <i>Journal of Physical Chemistry C</i> , 2016, 120, 20040-20048	3.8	29

(2015-2016)

229	Influence of Molecular Aggregation on Electron Transfer at the Perylene Diimide/Indium-Tin Oxide Interface. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34089-34097	9.5	10
228	Comparison of 3D non-fullerene acceptors for organic photovoltaics based on naphthalene diimide and perylene diimide-substituted 9,9?-bifluorenylidene. <i>RSC Advances</i> , 2016 , 6, 70493-70500	3.7	26
227	Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer. <i>Nano Letters</i> , 2016 , 16, 4329-34	11.5	40
226	Mixed-Valence Cations of Di(carbazol-9-yl) Biphenyl, Tetrahydropyrene, and Pyrene Derivatives. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 3156-3166	3.8	17
225	C-H-Activated Direct Arylation of Strong Benzothiadiazole and Quinoxaline-Based Electron Acceptors. <i>Journal of Organic Chemistry</i> , 2016 , 81, 360-70	4.2	29
224	Effective Work Function Reduction of Practical Electrodes Using an Organometallic Dimer. <i>Advanced Functional Materials</i> , 2016 , 26, 2493-2502	15.6	25
223	Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. <i>Chemical Reviews</i> , 2016 , 116, 7117-58	68.1	135
222	Synthesis, characterization, and crystal structures of molybdenum complexes of unsymmetrical electron-poor dithiolene ligands. <i>Polyhedron</i> , 2016 , 116, 88-95	2.7	21
221	Impact of a Low Concentration of Dopants on the Distribution of Gap States in a Molecular Semiconductor. <i>Chemistry of Materials</i> , 2016 , 28, 2677-2684	9.6	27
220	Ultra-low p-doping of poly(3-hexylthiophene) and its impact on polymer aggregation and photovoltaic performance. <i>Organic Photonics and Photovoltaics</i> , 2016 , 4,	5	3
219		5 9.5	3 55
	photovoltaic performance. <i>Organic Photonics and Photovoltaics</i> , 2016 , 4, A Study on Reducing Contact Resistance in Solution-Processed Organic Field-Effect Transistors.	9.5	55
219	photovoltaic performance. <i>Organic Photonics and Photovoltaics</i> , 2016 , 4, A Study on Reducing Contact Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & amp; Interfaces, 2016 , 8, 24744-52	9.5	55 34
219	photovoltaic performance. <i>Organic Photonics and Photovoltaics</i> , 2016 , 4, A Study on Reducing Contact Resistance in Solution-Processed Organic Field-Effect Transistors. <i>ACS Applied Materials & Design College Materials & Design Colleg</i>	9.5 0 20.1	55 34
219 218 217	photovoltaic performance. <i>Organic Photonics and Photovoltaics</i> , 2016 , 4, A Study on Reducing Contact Resistance in Solution-Processed Organic Field-Effect Transistors. <i>ACS Applied Materials & Design College Materials & Design Colleg</i>	9·5 020.1 16.4	55 34 20
219 218 217 216	photovoltaic performance. <i>Organic Photonics and Photovoltaics</i> , 2016 , 4, A Study on Reducing Contact Resistance in Solution-Processed Organic Field-Effect Transistors. <i>ACS Applied Materials & Description of Materials & Description of Materials & Description of Pattern Science Molecular Doping of Colloidal Quantum Dot Photovoltaics. <i>ACS Energy Letters</i>, 2016, 1, 922-93 Facile Incorporation of Pd(PPh3)2Hal Substituents into Polymethines, Merocyanines, and Perylene Diimides as a Means of Suppressing Intermolecular Interactions. <i>Journal of the American Chemical Society</i>, 2016, 138, 10112-5 Dimers of Nineteen-Electron Sandwich Compounds: An Electrochemical Study of the Kinetics of Their Formation. <i>Organometallics</i>, 2015, 34, 3706-3712 Investigation of p-dopant diffusion in polymer films and bulk heterojunctions: Stable</i>	9·5 020.1 16.4 3.8	55 34 20 4
219 218 217 216 215	photovoltaic performance. <i>Organic Photonics and Photovoltaics</i> , 2016 , 4, A Study on Reducing Contact Resistance in Solution-Processed Organic Field-Effect Transistors. <i>ACS Applied Materials & Design Materials & Design</i>	9·5 020.1 16.4 3.8	553420436

211	Dopant controlled trap-filling and conductivity enhancement in an electron-transport polymer. <i>Applied Physics Letters</i> , 2015 , 106, 163301	3.4	49
210	Organometallic dimers: application to work-function reduction of conducting oxides. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 7, 4320-6	9.5	20
209	Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. <i>Advanced Materials</i> , 2015 , 27, 1175-81	24	155
208	Enhanced Charge-Carrier Injection and Collection Via Lamination of Doped Polymer Layers p-Doped with a Solution-Processible Molybdenum Complex. <i>Advanced Functional Materials</i> , 2014 , 24, 2197-2204	15.6	70
207	Synthesis, crystal structures, and redox behavior of some pentamethylcyclopentadienyl arene ruthenium salts. <i>Journal of Organometallic Chemistry</i> , 2014 , 751, 314-320	2.3	8
206	Phosphorescent light-emitting diodes using triscarbazole/bis(oxadiazole) hosts: comparison of homopolymer blends and random and block copolymers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6743	7.1	11
205	Effective solution- and vacuum-processed n-doping by dimers of benzimidazoline radicals. <i>Advanced Materials</i> , 2014 , 26, 4268-72	24	114
204	Tetracyano isoindigo small molecules and their use in n-channel organic field-effect transistors. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 19345-50	3.6	14
203	Polymethine materials with solid-state third-order optical susceptibilities suitable for all-optical signal-processing applications. <i>Materials Horizons</i> , 2014 , 1, 577-581	14.4	51
202	Nonlinear optical pulse suppression via ultrafast photoinduced electron transfer in an aggregated perylene diimide/oligothiophene molecular triad. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 110-21	2.8	14
201	Molecular doping and tuning threshold voltage in 6,13-bis(triisopropylsilylethynyl)pentacene/polymer blend transistors. <i>Applied Physics Letters</i> , 2014 , 105, 063301	3.4	27
200	Dimers of nineteen-electron sandwich compounds: crystal and electronic structures, and comparison of reducing strengths. <i>Chemistry - A European Journal</i> , 2014 , 20, 15385-94	4.8	35
199	Design of Organic Chromophores for All-Optical Signal Processing Applications. <i>Chemistry of Materials</i> , 2014 , 26, 549-560	9.6	102
198	Production of heavily n- and p-doped CVD graphene with solution-processed redox-active metalBrganic species. <i>Materials Horizons</i> , 2014 , 1, 111-115	14.4	59
197	2-Bromo perylene diimide: synthesis using CH activation and use in the synthesis of bis(perylene diimide)donor electron-transport materials. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5093	7.1	32
196	High-Performance n-Channel Thin-Film Field-Effect Transistors Based on a Nanowire-Forming Polymer. <i>Advanced Functional Materials</i> , 2013 , 23, 2060-2071	15.6	40
195	Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. <i>Journal of the American Chemical Society</i> , 2013 , 135, 15018-25	16.4	159
194	Dipolar Ferrocene and Ruthenocene Second-Order Nonlinear Optical Chromophores: A Time-Dependent Density Functional Theory Investigation of Their Absorption Spectra. Organometallics 2013, 32, 6061-6068	3.8	37

(2012-2013)

193	Controllable direct arylation: fast route to symmetrical and unsymmetrical 4,7-diaryl-5,6-difluoro-2,1,3-benzothiadiazole derivatives for organic optoelectronic materials. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16376-9	16.4	113
192	Efficient blue-emitting electrophosphorescent organic light-emitting diodes using 2-(3,5-di(carbazol-9-yl)phenyl)-5-phenyl-1,3,4-oxadiazole as an ambipolar host. <i>RSC Advances</i> , 2013 , 3, 23514	3.7	9
191	Perylene diimide copolymers with dithienothiophene and dithienopyrrole: Use in n-channel and ambipolar field-effect transistors. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 1550-1558	2.5	19
190	The role of Ibridges in high-efficiency DSCs based on unsymmetrical squaraines. <i>Chemistry - A European Journal</i> , 2013 , 19, 1819-27	4.8	90
189	Crosslinking using rapid thermal processing for the fabrication of efficient solution-processed phosphorescent organic light-emitting diodes. <i>Advanced Materials</i> , 2013 , 25, 1739-44	24	60
188	Bis(carbazolyl) derivatives of pyrene and tetrahydropyrene: synthesis, structures, optical properties, electrochemistry, and electroluminescence. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1638	7.1	72
187	Reduction of contact resistance by selective contact doping in fullerene n-channel organic field-effect transistors. <i>Applied Physics Letters</i> , 2013 , 102, 153303	3.4	43
186	Bis(naphthalene diimide) derivatives with mono- and dicarbonyl-fused tricyclic heterocyclic bridges as electron-transport materials 2013 , 1, 7-15		8
185	Fluorescent detection of anions by dibenzophenazine-based sensors. <i>Tetrahedron Letters</i> , 2012 , 53, 66	1- <u>1</u> 665	37
184	Complementary-like inverters based on an ambipolar solution-processed molecular bis(naphthalene diimide)-dithienopyrrole derivative. <i>Organic Electronics</i> , 2012 , 13, 1166-1170	3.5	26
183	Synthesis and characterization of naphthalene diimide/diethynylbenzene copolymers. <i>Polymer</i> , 2012 , 53, 1072-1078	3.9	20
182	n-Doping of organic electronic materials using air-stable organometallics. <i>Advanced Materials</i> , 2012 , 24, 699-703	24	138
181	Solution doping of organic semiconductors using air-stable n-dopants. <i>Applied Physics Letters</i> , 2012 , 100, 083305	3.4	76
180	Characterisation of a dipolar chromophore with third-harmonic generation applications in the near-IR. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4371		15
179	n-Doping of organic electronic materials using air-stable organometallics: a mechanistic study of reduction by dimeric sandwich compounds. <i>Chemistry - A European Journal</i> , 2012 , 18, 14760-72	4.8	51
178	Tuning delocalization in the radical cations of 1,4-bis[4-(diarylamino)styryl]benzenes, 2,5-bis[4-(diarylamino)styryl]thiophenes, and 2,5-bis[4-(diarylamino)styryl]pyrroles through substituent effects. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10146-55	16.4	62
177	Polynorbornenes with pendant perylene diimides for organic electronic applications. <i>Polymer Chemistry</i> , 2012 , 3, 2996	4.9	18
176	Optimization of the double pump-probe technique: decoupling the triplet yield and cross section. Journal of Physical Chemistry A, 2012 , 116, 4833-41	2.8	8

175	Passivation of trap states in unpurified and purified C60 and the influence on organic field-effect transistor performance. <i>Applied Physics Letters</i> , 2012 , 101, 253303	3.4	52
174	Effects of Dendronization on the Linear and Third-Order Nonlinear Optical Properties of Bis(thiopyrylium) Polymethine Dyes in Solution and the Solid State. <i>Chemistry of Materials</i> , 2012 , 24, 1606-1618	9.6	32
173	Synthesis and characterization of nonamethylrhodocenium and iridocenium hexafluorophosphate salts. <i>Journal of Organometallic Chemistry</i> , 2012 , 706-707, 140-143	2.3	10
172	A 2,6-diformylnaphthalene-1,8:4,5-bis(dicarboximide): synthesis and Knoevenagel condensation with malononitrile. <i>Journal of Organic Chemistry</i> , 2012 , 77, 9426-8	4.2	16
171	Stannyl derivatives of naphthalene diimides and their use in oligomer synthesis. <i>Organic Letters</i> , 2012 , 14, 918-21	6.2	52
170	Ultralow doping in organic semiconductors: evidence of trap filling. <i>Physical Review Letters</i> , 2012 , 176601	7.4	192
169	Photoinduced electron transfer and nonlinear absorption in poly(carbazole-alt-2,7-fluorene)s bearing perylene diimides as pendant acceptors. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 4305-17	2.8	18
168	Hybrid rylene arrays via combination of Stille coupling and C-H transformation as high-performance electron transport materials. <i>Journal of the American Chemical Society</i> , 2012 , 134, 5770-3	16.4	117
167	Transition metal-catalyzed Cℍ activation as a route to structurally diverse di(arylthiophenyl)-diketopyrrolopyrroles. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21392		40
166	A universal method to produce low-work function electrodes for organic electronics. <i>Science</i> , 2012 , 336, 327-32	33.3	1642
166 165		33.3	1642
	2,6-Diacylnaphthalene-1,8:4,5-bis(dicarboximides): synthesis, reduction potentials, and core		
165	2,6-Diacylnaphthalene-1,8:4,5-bis(dicarboximides): synthesis, reduction potentials, and core extension. <i>Journal of Organic Chemistry</i> , 2012 , 77, 5544-51 Stable solution-processed molecular n-channel organic field-effect transistors. <i>Advanced Materials</i> ,	4.2	18
165 164	2,6-Diacylnaphthalene-1,8:4,5-bis(dicarboximides): synthesis, reduction potentials, and core extension. <i>Journal of Organic Chemistry</i> , 2012 , 77, 5544-51 Stable solution-processed molecular n-channel organic field-effect transistors. <i>Advanced Materials</i> , 2012 , 24, 4445-50 Approaches to Solution-Processed Multilayer Organic Light-Emitting Diodes Based on	4.2	18
165 164 163	2,6-Diacylnaphthalene-1,8:4,5-bis(dicarboximides): synthesis, reduction potentials, and core extension. <i>Journal of Organic Chemistry</i> , 2012 , 77, 5544-51 Stable solution-processed molecular n-channel organic field-effect transistors. <i>Advanced Materials</i> , 2012 , 24, 4445-50 Approaches to Solution-Processed Multilayer Organic Light-Emitting Diodes Based on Cross-Linking <i>Chemistry of Materials</i> , 2011 , 23, 658-681 Dithienopyrrolequinoxaline/pyridopyrazine donoracceptor polymers: synthesis and electrochemical, optical, charge-transport, and photovoltaic properties. <i>Journal of Materials</i>	4.2	18 61 172
165164163162	2,6-Diacylnaphthalene-1,8:4,5-bis(dicarboximides): synthesis, reduction potentials, and core extension. <i>Journal of Organic Chemistry</i> , 2012 , 77, 5544-51 Stable solution-processed molecular n-channel organic field-effect transistors. <i>Advanced Materials</i> , 2012 , 24, 4445-50 Approaches to Solution-Processed Multilayer Organic Light-Emitting Diodes Based on Cross-Linking <i>Chemistry of Materials</i> , 2011 , 23, 658-681 Dithienopyrrole uinoxaline/pyridopyrazine donor cceptor polymers: synthesis and electrochemical, optical, charge-transport, and photovoltaic properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4971 Synthesis and linear and nonlinear absorption properties of dendronised ruthenium(II)	4.2 24 9.6	18 61 172 51
165164163162161	2,6-Diacylnaphthalene-1,8:4,5-bis(dicarboximides): synthesis, reduction potentials, and core extension. <i>Journal of Organic Chemistry</i> , 2012 , 77, 5544-51 Stable solution-processed molecular n-channel organic field-effect transistors. <i>Advanced Materials</i> , 2012 , 24, 4445-50 Approaches to Solution-Processed Multilayer Organic Light-Emitting Diodes Based on Cross-Linking <i>Il Chemistry of Materials</i> , 2011 , 23, 658-681 Dithienopyrrolequinoxaline/pyridopyrazine donor@cceptor polymers: synthesis and electrochemical, optical, charge-transport, and photovoltaic properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4971 Synthesis and linear and nonlinear absorption properties of dendronised ruthenium(II) phthalocyanine and naphthalocyanine. <i>Chemical Communications</i> , 2011 , 47, 4547-9 Polymers with Carbazole-Oxadiazole Side Chains as Ambipolar Hosts for Phosphorescent	4.2 24 9.6	18 61 172 51 28

(2010-2011)

157	Solution-Processed Molecular Bis(Naphthalene Diimide) Derivatives with High Electron Mobility. <i>Chemistry of Materials</i> , 2011 , 23, 3408-3410	9.6	104
156	Dioxaborine- and indole-terminated polymethines: effects of bridge substitution on absorption spectra and third-order polarizabilities. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 2160-8	2.8	23
155	Rylene and related diimides for organic electronics. Advanced Materials, 2011, 23, 268-84	24	1366
154	A High-Efficiency Panchromatic Squaraine Sensitizer for Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2011 , 123, 6749-6751	3.6	36
153	A high-efficiency panchromatic squaraine sensitizer for dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6619-21	16.4	131
152	Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines. <i>Chemical Communications</i> , 2011 , 47, 782-4	5.8	22
151	Photo-induced charge transfer and nonlinear absorption in dyads composed of a two-photon-absorbing donor and a perylene diimide acceptor. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16119		34
150	Benzothiadiazole-Dithienopyrrole DonorAcceptorDonor and AcceptorDonorAcceptor Triads: Synthesis and Optical, Electrochemical, and Charge-Transport Properties. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 23149-23163	3.8	85
149	Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends. <i>Organic Electronics</i> , 2011 , 12, 492-496	3.5	40
148	High-efficiency blue-green electrophosphorescent light-emitting devices using a bis-sulfone as host in the emitting layer. <i>Organic Electronics</i> , 2011 , 12, 1314-1318	3.5	25
147	N,N-Dihydrotetraazaheptacene: A Synthetic Strategy towards Larger Acenes with Ambient Stability. <i>Synlett</i> , 2011 , 2011, 1983-1986	2.2	3
146	Remote doping of a pentacene transistor: Control of charge transfer by molecular-level engineering. <i>Applied Physics Letters</i> , 2010 , 97, 123305	3.4	33
145	Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit. <i>Science</i> , 2010 , 327, 1485-8	33.3	275
144	Electronic properties of the 2,6-diiododithieno[3,2-b:2\BNd]thiophene molecule and crystal: a joint experimental and theoretical study. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 749-55	3.4	21
143	A Molybdenum Dithiolene Complex as p-Dopant for Hole-Transport Materials: A Multitechnique Experimental and Theoretical Investigation. <i>Chemistry of Materials</i> , 2010 , 22, 524-531	9.6	60
142	Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12919-26	16.4	119
141	Dithienopyrrole-based donor\(\text{lcceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism. \(Journal of Materials Chemistry, \textbf{2010}, 20, 123-134\)		140
140	Effects of electronegative substitution on the optical and electronic properties of acenes and diazaacenes. <i>Nature Communications</i> , 2010 , 1, 91	17.4	166

139	Electronic and optical properties of 4H-cyclopenta[2,1-b:3,4-b¶bithiophene derivatives and their 4-heteroatom-substituted analogues: a joint theoretical and experimental comparison. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 14397-407	3.4	61
138	Excited-state dynamics and dye-dye interactions in dye-coated gold nanoparticles with varying alkyl spacer lengths. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 6267-77	3.6	20
137	Using end groups to tune the linear and nonlinear optical properties of bis(dioxaborine)-terminated polymethine dyes. <i>ChemPhysChem</i> , 2010 , 11, 130-8	3.2	26
136	High-Strain Shape-Memory Polymers. Advanced Functional Materials, 2010, 20, 162-171	15.6	194
135	Pentacene organic field-effect transistors with doped electrode-semiconductor contacts. <i>Organic Electronics</i> , 2010 , 11, 860-863	3.5	54
134	6,13-Diethynyl-5,7,12,14-tetraazapentacene. <i>Chemistry - A European Journal</i> , 2009 , 15, 4990-3	4.8	167
133	Synthesis, electron mobility, and electroluminescence of a polynorbornene-supported silole. <i>Polymer</i> , 2009 , 50, 397-403	3.9	15
132	Photoinduced intramolecular electron transfer in conjugated perylene bisimide-dithienothiophene systems: a comparative study of a small molecule and a polymer. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 5039-46	2.8	56
131	Photophysical properties of an alkyne-bridged bis(zinc porphyrin)-perylene bis(dicarboximide) derivative. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 10826-32	2.8	34
130	Preparation and characterization of 4Ndonor substituted stilbene-4-thiolate monolayers and their influence on the work function of gold. <i>Langmuir</i> , 2009 , 25, 7967-75	4	24
129	Dipolar Second-Order Nonlinear Optical Chromophores Containing Ferrocene, Octamethylferrocene, and Ruthenocene Donors and Strong EAcceptors: Crystal Structures and Comparison of EDonor Strengths. <i>Organometallics</i> , 2009 , 28, 1350-1357	3.8	42
128	Use of a high electron-affinity molybdenum dithiolene complex to p-dope hole-transport layers. Journal of the American Chemical Society, 2009 , 131, 12530-1	16.4	81
127	Synthesis and two-photon spectrum of a bis(porphyrin)-substituted squaraine. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7510-1	16.4	74
126	Linear and nonlinear spectroscopy of a porphyrin-squaraine-porphyrin conjugated system. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 14854-67	3.4	38
125	Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5794		158
124	Synthesis and photophysical properties of donor- and acceptor-substituted 1,7-bis(arylalkynyl)perylene-3,4:9,10-bis(dicarboximide)s. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 55	8 5 -93	78
123	Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum: erratum. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2009 , 26, 1663	1.7	3
122	Alkynylated aceno[2,1,3]thiadiazoles. <i>Organic Letters</i> , 2009 , 11, 5222-5	6.2	70

(2008-2009)

121	Intramolecular electron-transfer rates in mixed-valence triarylamines: measurement by variable-temperature ESR spectroscopy and comparison with optical data. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1717-23	16.4	68
120	Fabrication of a Blue \$Mtimes N\$ Pixel Organic Light-Emitting Diode Video Display Incorporating a Thermally Stable Emitter. <i>Journal of Display Technology</i> , 2009 , 5, 120-125		5
119	Substituent effects on the electronic structure of siloles. <i>Chemical Communications</i> , 2009 , 1948-55	5.8	133
118	Charge photogeneration in polythiophene-perylene diimide blend films. <i>Chemical Communications</i> , 2009 , 5445-7	5.8	62
117	A spray-processable, low bandgap, and ambipolar donor-acceptor conjugated polymer. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2824-6	16.4	208
116	Norbornene-Based Copolymers Containing Platinum Complexes and Bis(carbazolyl)benzene Groups in Their Side-Chains. <i>Macromolecules</i> , 2009 , 42, 6855-6864	5.5	61
115	Room-temperature discotic liquid-crystalline coronene diimides exhibiting high charge-carrier mobility in air. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6688		100
114	Synthesis of a Nickel Bis(dithiolene) Complex with Strong Near-Infrared Two-Photon Absorption. <i>Molecular Crystals and Liquid Crystals</i> , 2008 , 485, 915-927	0.5	6
113	Two-Photon Absorbing Materials and Two-Photon-Induced Chemistry 2008, 1-95		29
112	Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 159	1.7	36
111	Stabilisation of a heptamethine cyanine dye by rotaxane encapsulation. <i>Chemical Communications</i> , 2008 , 2897-9	5.8	68
110	Fluorenyl-substituted silole molecules: geometric, electronic, optical, and device properties. Journal of Materials Chemistry, 2008 , 18, 3157		40
109	Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide-alt-bis(dithienothiophene)]. <i>Applied Physics Letters</i> , 2008 , 93, 073309	3.4	120
108	Inter versus intra-molecular photoinduced charge separation in solid films of donor-acceptor molecules. <i>Chemical Communications</i> , 2008 , 4915-7	5.8	11
107	Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3316		35
106	Trends in Electron-Vibration and Electronic Interactions in Bis(dimethylamino) Mixed-Valence Systems: A Joint Experimental and Theoretical Investigation Journal of Physical Chemistry C, 2008, 112, 7959-7967	3.8	21
105	Quasi-epitaxy of a Tris(thieno)hexaazatriphenylene Derivative Adsorbed on Ag(110): Structural and Electronic Properties Probed by Scanning Tunneling Microscopy. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 9803-9807	3.8	9
104	Tetrastyrylarene Derivatives: Comparison of One- and Two-Photon Spectroscopic Properties with Distyrylarene Analogues <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8061-8071	3.8	36

103	A Comparative Study of Charge Mobility Measurements in a Diamine and in a Hexaazatrinaphthylene Using Different Techniques. <i>Molecular Crystals and Liquid Crystals</i> , 2008 , 481, 80-93	0.5	15
102	Commensurate growth and diminishing substrate influence in a multilayer film of a tris(thieno)hexaazatriphenylene derivative on Au(111) studied by scanning tunneling microscopy. <i>Physical Review B</i> , 2008 , 77,	3.3	11
101	Substrate-dependent electronic structure of an organic heterojunction. <i>Physical Review B</i> , 2008 , 77,	3.3	28
100	Electronic and vibronic contributions to two-photon absorption in donor-acceptor-donor squaraine chromophores. <i>Chemistry - A European Journal</i> , 2008 , 14, 11082-91	4.8	41
99	Order of Magnitude Effects of Thiazole Regioisomerism on the Near-IR Two-Photon Cross-Sections of Dipolar Chromophores. <i>Advanced Functional Materials</i> , 2008 , 18, 794-801	15.6	8
98	Thick Optical-Quality Films of Substituted Polyacetylenes with Large, Ultrafast Third-Order Nonlinearities and Application to Image Correlation. <i>Advanced Materials</i> , 2008 , 20, 3199-3203	24	16
97	Decamethylcobaltocene as an efficient n-dopant in organic electronic materials and devices. <i>Organic Electronics</i> , 2008 , 9, 575-581	3.5	89
96	Photoemission studies of interfaces between a tris(thieno)hexaazatriphenylene derivative and metals. <i>Organic Electronics</i> , 2008 , 9, 944-951	3.5	6
95	Are N,N-dihydrodiazatetracene derivatives antiaromatic?. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7339-44	16.4	146
94	High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges. <i>Chemical Communications</i> , 2007 , 1372-4	5.8	51
93	High electron mobility in nickel bis(dithiolene) complexes. <i>Journal of Materials Chemistry</i> , 2007 , 17, 264	2	57
92	Multiphase Growth and Electronic Structure of Ultrathin Hexaazatrinaphthylene on Au(111). <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10493-10497	3.8	23
91	A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7246-7	16.4	1023
90	Synthesis, ionisation potentials and electron affinities of hexaazatrinaphthylene derivatives. <i>Chemistry - A European Journal</i> , 2007 , 13, 3537-47	4.8	74
89	Bis[bis-(4-alkoxyphenyl)amino] derivatives of dithienylethene, bithiophene, dithienothiophene and dithienopyrrole: palladium-catalysed synthesis and highly delocalised radical cations. <i>Chemistry - A European Journal</i> , 2007 , 13, 9637-46	4.8	68
88	Two-Photon Absorption in Quadrupolar Bis(acceptor)-Terminated Chromophores with Electron-Rich Bis(heterocycle)vinylene Bridges. <i>Chemistry of Materials</i> , 2007 , 19, 432-442	9.6	62
87	Strong two-photon absorption at telecommunications wavelengths in nickel bis(dithiolene) complexes. <i>Optics Letters</i> , 2007 , 32, 671-3	3	22
86	65 nm feature sizes using visible wavelength 3-D multiphoton lithography. <i>Optics Express</i> , 2007 , 15, 347	26 5.3 6	244

85	Highly ordered thin films of a bis(dithienothiophene) derivative. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4972		29
84	Synthesis and Characterization of Polymerizable Phosphorescent Platinum(II) Complexes for Solution-Processible Organic Light-Emitting Diodes. <i>Organometallics</i> , 2007 , 26, 4816-4829	3.8	65
83	Incorporation of cobaltocene as an n-dopant in organic molecular films. <i>Journal of Applied Physics</i> , 2007 , 102, 014906	2.5	33
82	Efficient acceptor groups for NLO chromophores: competing inductive and resonance contributions in heterocyclic acceptors derived from 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran. <i>Journal of Materials Chemistry</i> ,		35
81	Norbornene-Based Copolymers with Iridium Complexes and Bis(carbazolyl)fluorene Groups in Their Side-Chains and Their Use in Light-Emitting Diodes. <i>Chemistry of Materials</i> , 2007 , 19, 5602-5608	9.6	59
80	Comparison of the bis(ferrocenylethynyl)phenylmethylium cation with bis(ferrocenylethenyl)methylium analogues. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 3285-3292	2.3	7
79	Extended squaraine dyes with large two-photon absorption cross-sections. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14444-5	16.4	181
78	Comparative studies of the geometric and electronic properties of 1,1-disubstituted-2,3,4,5-tetraphenylsiloles and 1,1,2,2-tetramethyl-3,4,5,6-tetraphenyl-1,2-disila-3,5-cyclohexadiene. <i>Journal of Materials Chemistry</i>		19
77	Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing. Journal of the American Chemical Society, 2006 , 128, 11362-3	16.4	123
76	Isolation and crystal structures of two singlet bis(triarylamine) dications with nonquinoidal geometries. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1812-7	16.4	70
75	N-type doping of an electron-transport material by controlled gas-phase incorporation of cobaltocene. <i>Chemical Physics Letters</i> , 2006 , 431, 67-71	2.5	86
74	A mixed-valence bis(diarylamino)stilbene: crystal structure and comparison of electronic coupling with biphenyl and tolane analogues. <i>Chemical Communications</i> , 2005 , 764-6	5.8	49
73	Electron affinities of 1,1-diaryl-2,3,4,5-tetraphenylsiloles: direct measurements and comparison with experimental and theoretical estimates. <i>Journal of the American Chemical Society</i> , 2005 , 127, 9021-	. j 6.4	148
72	High charge-carrier mobility in an amorphous hexaazatrinaphthylene derivative. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16358-9	16.4	87
71	A fluorine-substituted hexakisdecyloxy- hexa-peri-hexabenzocoronene. <i>Organic Letters</i> , 2005 , 7, 5019-2	26.2	31
70	Koopmans-based analysis of the optical spectra of p-phenylene-bridged intervalence radical ions. Journal of Organic Chemistry, 2005 , 70, 9326-33	4.2	26
69	Strong, low-energy two-photon absorption in extended amine-terminated cyano-substituted phenylenevinylene oligomers. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10844-5	16.4	117
68	Intervalence transitions in the mixed-valence monocations of bis(triarylamines) linked with vinylene and phenylene-vinylene bridges. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16900-11	16.4	126

67	Two-photon absorption at telecommunications wavelengths in a dipolar chromophore with a pyrrole auxiliary donor and thiazole auxiliary acceptor. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7282-3	16.4	142
66	Aromatic amines: a comparison of electron-donor strengths. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 9346-52	2.8	118
65	Cyclometalated platinum complexes: High-yield synthesis, characterization, and a crystal structure. Journal of Organometallic Chemistry, 2005 , 690, 4090-4093	2.3	54
64	Electronic coupling in mixed-valence dinuclear ferrocenes and cobaltocenes with saturated bridging groups. <i>Chemistry - A European Journal</i> , 2005 , 11, 4473-81	4.8	57
63	High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time. <i>Applied Physics Letters</i> , 2005 , 87, 171105	3.4	30
62	High-performance photorefractive polymer operating at 975nm. <i>Applied Physics Letters</i> , 2004 , 85, 1095	-3097	24
61	Synthesis, structures and reactions of some metallocene alcohols. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 252-263	2.3	10
60	1,1?-(1-Propene-1,3-diyl)-ferrocene: modified synthesis, crystal structure, and polymerisation behaviour. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 775-780	2.3	15
59	Two-photon absorption in linear bis-dioxaborine compounds-the impact of correlation-induced oscillator-strength redistribution. <i>ChemPhysChem</i> , 2004 , 5, 982-8	3.2	23
58	Synthesis of acrylate and norbornene polymers with pendant 2,7-bis(diarylamino)fluorene hole-transport groups. <i>Tetrahedron</i> , 2004 , 60, 7169-7176	2.4	28
57	Trends in Optical Nonlinearity and Thermal Stability in Electrooptic Chromophores Based upon the 3-(Dicyanomethylene)-2,3-dihydrobenzothiophene-1, 1-dioxide Acceptor <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8626-8630	3.4	48
56	Electronic couplings in organic mixed-valence compounds: the contribution of photoelectron spectroscopy. <i>Journal of the American Chemical Society</i> , 2004 , 126, 2727-31	16.4	82
55	Delocalization in platinum-alkynyl systems: a metal-bridged organic mixed-valence compound. Journal of the American Chemical Society, 2004 , 126, 11782-3	16.4	114
54	Electron-Transport Properties and Use in Organic Light-Emitting Diodes of a Bis(dioxaborine)fluorene Derivative Journal of Physical Chemistry B, 2004 , 108, 8647-8651	3.4	86
53	Limitations of Essential-State Models for the Description of Two-Photon Absorption Processes: The Example of Bis(dioxaborine)-Substituted Chromophores Journal of Physical Chemistry B, 2004 , 108, 8641-8646	3.4	29
52	Direct imaging through scattering media by use of efficient third-harmonic generation in organic materials. <i>Optics Letters</i> , 2004 , 29, 2515-7	3	10
51	Synthesis and Characterization of a Bimetallic Boratabenzene Cobalt Complex. <i>Organometallics</i> , 2004 , 23, 3808-3813	3.8	12
50	A convenient method for the synthesis of electron-rich phosphonates. <i>Tetrahedron Letters</i> , 2003 , 44, 7989-7992	2	52

(2000-2003)

49	N,N-dimethyl-NN[(1E,2E)-3-(4-nitrophenyl)prop-2-enylidene]benzene-1,4-diamine and N,N-dimethyl-4-[(1E,3E)-4-(4-nitrophenyl)buta-1,3-dienyl]-1-naphthylamine. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 2003 , 59, o625-8		2
48	Organic light-emitting diodes with multiple photocrosslinkable hole-transport layers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2003 , 41, 2726-2732	2.6	20
47	Synthesis and stability studies of conformationally locked 4-(diarylamino)aryl- and 4-(dialkylamino)phenyl-substituted second-order nonlinear optical polyene chromophores. <i>Journal of Materials Chemistry</i> , 2003 , 13, 825-833		76
46	Effect of Substitution on the Hole Mobility of Bis(diarylamino)biphenyl Derivatives Doped in Poly(Styrene). <i>Chemistry of Materials</i> , 2003 , 15, 994-999	9.6	34
45	Columnar Discotic Liquid-Crystalline Oxadiazoles as Electron-Transport Materials <i>Langmuir</i> , 2003 , 19, 6534-6536	4	77
44	Bis(dioxaborine) compounds with large two-photon cross sections, and their use in the photodeposition of silver. <i>Chemical Communications</i> , 2003 , 1490-1491	5.8	80
43	An anionic organic mixed-valence system with a remarkably well-resolved vibrational structure in its intervalence band. <i>Chemical Communications</i> , 2003 , 194-5	5.8	23
42	Metallocene-terminated allylium salts: the effect of end group on localization in polymethines. Journal of the American Chemical Society, 2002 , 124, 6285-96	16.4	27
41	Pentalene complexes of group 7 metal carbonyls: an organometallic mixed-valence system with very large metal-metal electronic coupling. <i>Journal of the American Chemical Society</i> , 2002 , 124, 11610-	1 ^{16.4}	50
40	Optimizing Two-Photon Initiators and Exposure Conditions for Three-Dimensional Lithographic Microfabrication <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2001 , 14, 657-668	0.7	65
39	(eta 5-Cyclopentadienyl)(kappa 3-hydrotris(pyrazolyl)borate)cobalt(II)the first high-spin cobalt organometallic complex. <i>Chemical Communications</i> , 2001 , 2052-3	5.8	7
38	Fe(II)-to-Co(III) charge-transfer transitions in methylene-bridged metallocene salts. <i>Inorganic Chemistry</i> , 2001 , 40, 7047-53	5.1	65
37	The Ruthenocenylmethylium Cation: Isolation and Structures of B-Cyclopentadienyl-B-fulvene-ruthenium(II) Salts. <i>Organometallics</i> , 2001 , 20, 5351-5359	3.8	44
36	The one-electron oxidation product of a metallocenyl-terminated cyanine. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 2000 , 56 (Pt 3), 303-4		1
35	Three-dimensional microfabrication using two-photon-activated chemistry 2000 , 3937, 97		4
34	Structure P roperty Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives. <i>Journal of the American Chemical Society</i> , 2000 , 122, 9500-9510	16.4	768
33	Hydrothermal synthesis of (C6N2H14)2(UVI2UIVO4F12), a mixed-valent one-dimensional uranium oxyfluoride. <i>Inorganic Chemistry</i> , 2000 , 39, 3791-8	5.1	62
32	Electronic and optical properties of conjugated group 8metallocene derivatives. <i>Chemical Communications</i> , 2000 , 1555-1562	5.8	189

31	Ligand-Centered Oxidation in a Diirons-Indacene Complex. Organometallics, 2000, 19, 1071-1076	3.8	14
30	Hybrid bilayer organic light-emitting devices based on high Tg hole transport polymers 1999 , 3623, 20		
29	Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. <i>Nature</i> , 1999 , 398, 51-54	50.4	1832
28	Studies of the Electronic Structure of Metallocene-Based Second-Order Nonlinear Optical Dyes. Journal of the American Chemical Society, 1999 , 121, 3715-3723	16.4	245
27	Effect of the end-groups upon delocalisation in polymethines: the first crystallographically characterised bond-alternated cyanine. <i>Chemical Communications</i> , 1999 , 1567-1568	5.8	12
26	Synthesis and Properties of a (Diarylamino)ferrocene and Its Radical Cation. <i>Organometallics</i> , 1999 , 18, 454-456	3.8	25
25	Synthesis and Structure of [Fe(B-C9Me6)(B-C5H4)SiMe2]: A Mixed-Ring [1]Ferrocenophane. Organometallics, 1999 , 18, 2281-2284	3.8	9
24	New Triarylamine-Containing Polymers as Hole Transport Materials in Organic Light-Emitting Diodes: Effect of Polymer Structure and Cross-Linking on Device Characteristics. <i>Chemistry of Materials</i> , 1998 , 10, 1668-1676	9.6	175
23	Synthesis and Characterization of Ferrocenyl-Modified Mesoporous Silicates. <i>Chemistry of Materials</i> , 1998 , 10, 4088-4099	9.6	28
22	Electronic Structure of Strained Silicon- and Sulfur-Bridged [1]Ferrocenophanes and an Analogous Dicarbon-Bridged [2]Ferrocenophane:□An Investigation by Photoelectron Spectroscopy and Density-Functional Theory. <i>Organometallics</i> , 1998 , 17, 2113-2120	3.8	41
21	Electrochemical models for the radical annihilation reactions in organic light-emitting diodes 1998,		2
20	Modification of MCM-41 via ring opening of a strained[1]ferrocenophane. <i>Chemical Communications</i> , 1997 , 641-642	5.8	43
19	New strongly coupled dinuclear metal centres in organometallics-indacene complexes. <i>Chemical Communications</i> , 1997 , 953-954	5.8	18
18	Synthesis of Unsymmetrical Triarylamines for Photonic Applications via One-Pot Palladium-Catalyzed Aminations. <i>Chemistry of Materials</i> , 1997 , 9, 3231-3235	9.6	89
17	Metalminus signMetal Interactions in Linked Metallocenes. <i>Chemical Reviews</i> , 1997 , 97, 637-670	68.1	512
16	Synthesis, characterisation and structure of a strained ring-tilted bis(indenyl)iron complex. <i>Journal of Organometallic Chemistry</i> , 1997 , 528, 47-58	2.3	25
15	Thermal Ring-Opening Polymerization of Hydrocarbon-Bridged [2]Ferrocenophanes: Synthesis and Properties of Poly(ferrocenylethylene)s and Their Charge-Transfer Polymer Salts with Tetracyanoethylene. <i>Chemistry - A European Journal</i> , 1997 , 3, 573-584	4.8	60
14	Synthesis, Characterization, and Properties of High Molecular Weight Poly(methylated ferrocenylsilanes) and Their Charge Transfer Polymer Salts with Tetracyanoethylene. <i>Macromolecules</i> , 1996 , 29, 1894-1903	5.5	62

LIST OF PUBLICATIONS

13	Synthesis of Dihydrooctamethyl-s-indacene: Synthesis and Structures of Organometallic Derivatives. <i>Organometallics</i> , 1996 , 15, 3483-3485	3.8	14
12	Molecular dynamics in solid bis(Earene)molybdenum complexes studied by solid-state deuterium nuclear magnetic resonance spectroscopy. <i>Journal of the Chemical Society Dalton Transactions</i> , 1996 , 2989-2993		5
11	Synthesis of New [14]Metallocenophanes. <i>Organometallics</i> , 1996 , 15, 3885-3890	3.8	11
10	Molecular Mechanics Study of Oligomeric Models for Poly(ferrocenylsilanes) Using the Extensible Systematic Forcefield (ESFF). <i>Journal of the American Chemical Society</i> , 1996 , 118, 7578-7592	16.4	106
9	The first [2]cobaltocenophane and [2]metallocenophanium salts. <i>Chemical Communications</i> , 1996 , 2153	5.8	31
8	Molecular-mechanics study of oligomeric models for poly(ferrocenylsilanes) using the ESFF forcefield. <i>Chemical Communications</i> , 1996 , 257	5.8	15
7	Synthesis and Characterization of Trimetallocenes and Trimetallocenium Salts. <i>Organometallics</i> , 1995 , 14, 3461-3474	3.8	44
6	Synthesis, Structures, and Properties of Strained, Silicon-Bridged [1]Ferrocenophanes with Methylated Cyclopentadienyl Rings. <i>Organometallics</i> , 1995 , 14, 2470-2479	3.8	59
5	Electronic and magnetic properties of organometallic intercalates of zirconium dichalcogenides. <i>Chemistry of Materials</i> , 1995 , 7, 210-214	9.6	7
4	In situ X-ray diffraction evidence of guest molecule reorientation during an intercalation reaction. <i>Advanced Materials</i> , 1995 , 7, 163-166	24	5
3	Structural Characterization of Organometallic Sandwich Intercalates of Tin and Zirconium Dichalcogenides by X-ray and Neutron Diffraction and Solid State 2H NMR Spectroscopy. <i>Inorganic Chemistry</i> , 1994 , 33, 5515-5521	5.1	15
2	Structural characterisation of organometallic intercalates of SnSe2 and ZrS2 by neutron and X-ray diffraction. <i>Journal of the Chemical Society Chemical Communications</i> , 1993 , 1589		7
1	Nonlinear Optical Properties of Organic Materials393-437		7