Yuan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1944989/publications.pdf

Version: 2024-02-01

274 papers

22,361 citations

72 h-index 139 g-index

276 all docs

276 docs citations

276 times ranked

25877 citing authors

#	Article	IF	CITATIONS
1	Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano, 2011, 5, 6971-6980.	14.6	2,384
2	Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology, 2014, 9, 555-562.	31.5	1,312
3	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	17.3	694
4	Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nature Energy, 2020, 5, 881-890.	39.5	647
5	Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir, 2012, 28, 12364-12372.	3.5	498
6	Emergence of fiber supercapacitors. Chemical Society Reviews, 2015, 44, 647-662.	38.1	498
7	Sharper and Faster "Nano Darts―Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube. ACS Nano, 2009, 3, 3891-3902.	14.6	493
8	Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. Journal of Controlled Release, 2020, 328, 251-262.	9.9	325
9	Toward the Extraction of Single Species of Single-Walled Carbon Nanotubes Using Fluorene-Based Polymers. Nano Letters, 2007, 7, 3013-3017.	9.1	314
10	MXene Materials for Designing Advanced Separation Membranes. Advanced Materials, 2020, 32, e1906697.	21.0	295
11	Ternary Hybrids of Amorphous Nickel Hydroxide–Carbon Nanotubeâ€Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Advanced Functional Materials, 2015, 25, 1063-1073.	14.9	288
12	High-Purity Separation of Gold Nanoparticle Dimers and Trimers. Journal of the American Chemical Society, 2009, 131, 4218-4219.	13.7	267
13	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	10.3	261
14	Allâ€Carbon Nanoarchitectures as Highâ€Performance Separation Membranes with Superior Stability. Advanced Functional Materials, 2015, 25, 7348-7359.	14.9	248
15	Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solidâ€State Microâ€Supercapacitors with High Volumetric Energy Density. Advanced Materials, 2014, 26, 6790-6797.	21.0	243
16	Amorphous Bimetallic Oxide–Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Materials, 2017, 29, 1701410.	21.0	243
17	Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy and Environmental Science, 2020, 13, 3185-3206.	30.8	225
18	Hollow Fiber Membrane Decorated with Ag/MWNTs: Toward Effective Water Disinfection and Biofouling Control. ACS Nano, 2011, 5, 10033-10040.	14.6	217

#	Article	IF	CITATIONS
19	A Flexible Rechargeable Zinc–Air Battery with Excellent Lowâ€Temperature Adaptability. Angewandte Chemie - International Edition, 2020, 59, 4793-4799.	13.8	217
20	Toward Flexible Zincâ€ion Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 990-997.	13.8	215
21	Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. , 2019, 1, 173-199.		213
22	Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. Journal of Membrane Science, 2015, 474, 244-253.	8.2	211
23	Incorporation of Single-Wall Carbon Nanotubes into an Organic Polymer Monolithic Stationary Phase for μ-HPLC and Capillary Electrochromatography. Analytical Chemistry, 2005, 77, 1398-1406.	6.5	199
24	Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter, 2020, 3, 1442-1476.	10.0	196
25	Transforming Pristine Carbon Fiber Tows into High Performance Solidâ€State Fiber Supercapacitors. Advanced Materials, 2015, 27, 4895-4901.	21.0	193
26	Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc–Air Batteries. Small, 2018, 14, e1801929.	10.0	192
27	Carbon nanomaterials for advancing separation membranes: A strategic perspective. Carbon, 2016, 109, 694-710.	10.3	189
28	(n,m) Selectivity of Single-Walled Carbon Nanotubes by Different Carbon Precursors on Coâ^'Mo Catalysts. Journal of the American Chemical Society, 2007, 129, 9014-9019.	13.7	184
29	Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials, 2020, 25, 585-612.	18.0	181
30	Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives. Advanced Healthcare Materials, 2018, 7, e1701406.	7.6	166
31	Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	13.7	163
32	Deposition of Silver Nanoparticles on Multiwalled Carbon Nanotubes Grafted with Hyperbranched Poly(amidoamine) and Their Antimicrobial Effects. Journal of Physical Chemistry C, 2008, 112, 18754-18759.	3.1	161
33	1D Supercapacitors for Emerging Electronics: Current Status and Future Directions. Advanced Materials, 2020, 32, e1902387.	21.0	158
34	Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale, 2013, 5, 3457.	5.6	154
35	Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale, 2010, 2, 2744.	5.6	153
36	Using oxidation to increase the electrical conductivity of carbon nanotube electrodes. Carbon, 2009, 47, 1867-1870.	10.3	152

#	Article	IF	CITATIONS
37	Epitaxial Growth of CdS Nanoparticle on Bi ₂ S ₃ Nanowire and Photocatalytic Application of the Heterostructure. Journal of Physical Chemistry C, 2011, 115, 13968-13976.	3.1	149
38	Sandwich-Architectured Poly(lactic acid)–Graphene Composite Food Packaging Films. ACS Applied Materials & Discrete Rough (1994) (199	8.0	146
39	Synthesis and Characterization of Highly Ordered Coâ^'MCM-41 for Production of Aligned Single Walled Carbon Nanotubes (SWNT). Journal of Physical Chemistry B, 2003, 107, 11048-11056.	2.6	145
40	Homogeneous, Heterogeneous, and Biological Catalysts for Electrochemical N ₂ Reduction toward NH ₃ under Ambient Conditions. ACS Catalysis, 2019, 9, 5245-5267.	11.2	145
41	Flexible Zincâ€lon Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics. Small, 2019, 15, e1903817.	10.0	143
42	Uniform-Diameter Single-Walled Carbon Nanotubes Catalytically Grown in Cobalt-Incorporated MCM-41. Journal of Physical Chemistry B, 2004, 108, 503-507.	2.6	138
43	Toward Flexible Zincâ€lon Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie, 2021, 133, 1003-1010.	2.0	130
44	Textile energy storage: Structural design concepts, material selection and future perspectives. Energy Storage Materials, 2016, 3, 123-139.	18.0	128
45	Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. Journal of Membrane Science, 2019, 584, 20-45.	8.2	128
46	Immobilization of heparin/poly-I-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Acta Biomaterialia, 2014, 10, 1940-1954.	8.3	126
47	Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 764-774.	10.3	123
48	Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane. Applied Catalysis B: Environmental, 2010, 95, 374-382.	20.2	122
49	All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles. Materials Horizons, 2015, 2, 598-605.	12.2	120
50	Selective Synthesis of (9,8) Single Walled Carbon Nanotubes on Cobalt Incorporated TUD-1 Catalysts. Journal of the American Chemical Society, 2010, 132, 16747-16749.	13.7	119
51	How carboxylic groups improve the performance of single-walled carbon nanotube electrochemical capacitors?. Energy and Environmental Science, 2011, 4, 4220.	30.8	119
52	Enabling highly efficient, flexible and rechargeable quasi-solid-state zn-air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Materials, 2019, 20, 234-242.	18.0	115
53	Nanoâ€RuO ₂ â€Decorated Holey Graphene Composite Fibers for Microâ€Supercapacitors with Ultrahigh Energy Density. Small, 2018, 14, e1800582.	10.0	113
54	A hierarchically porous nickel–copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale, 2017, 9, 4401-4408.	5.6	110

#	Article	IF	CITATIONS
55	Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries. Energy and Environmental Science, 2021, 14, 4926-4935.	30.8	108
56	Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon, 2015, 81, 1-19.	10.3	106
57	Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures. Journal of Catalysis, 2004, 225, 453-465.	6.2	105
58	Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. Journal of Biotechnology, 2010, 150, 57-63.	3.8	105
59	A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Materials, 2020, 32, 448-457.	18.0	103
60	Individually Dispersing Single-Walled Carbon Nanotubes with Novel Neutral pH Water-Soluble Chitosan Derivatives. Journal of Physical Chemistry C, 2008, 112, 7579-7587.	3.1	102
61	Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. Journal of Membrane Science, 2013, 446, 244-254.	8.2	102
62	Chiral-Selective CoSO ₄ /SiO ₂ Catalyst for (9,8) Single-Walled Carbon Nanotube Growth. ACS Nano, 2013, 7, 614-626.	14.6	101
63	Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale, 2011, 3, 1874.	5 . 6	100
64	Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. Journal of Materials Chemistry A, 2017, 5, 20390-20397.	10.3	98
65	A review on lithium recovery using electrochemical capturing systems. Desalination, 2021, 500, 114883.	8.2	96
66	Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: realizing a built-to-order concept for micro-supercapacitors. Energy and Environmental Science, 2016, 9, 611-622.	30.8	94
67	Co–Fe–Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts. Advanced Energy Materials, 2021, 11, 2003412.	19.5	94
68	Synthesis and Characterization of Highly Ordered Ni-MCM-41 Mesoporous Molecular Sieves. Journal of Physical Chemistry B, 2005, 109, 13237-13246.	2.6	90
69	Differentiation of Gas Molecules Using Flexible and All-Carbon Nanotube Devices. Journal of Physical Chemistry C, 2008, 112, 650-653.	3.1	85
70	Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Materials, 2020, 28, 55-63.	18.0	85
71	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	10.3	80
72	One-Dimensional van der Waals Heterostructures as Efficient Metal-Free Oxygen Electrocatalysts. ACS Nano, 2021, 15, 3309-3319.	14.6	79

#	Article	IF	CITATIONS
73	Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.	10.3	77
74	A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon. Journal of Materials Chemistry A, 2015, 3, 7210-7214.	10.3	75
75	Ethanol-Assisted Graphene Oxide-Based Thin Film Formation at Pentane–Water Interface. Langmuir, 2011, 27, 9174-9181.	3.5	73
76	Pressure-Induced Single-Walled Carbon Nanotube ($\langle i \rangle n, m \langle i \rangle$) Selectivity on Coâ^'Mo Catalysts. Journal of Physical Chemistry C, 2007, 111, 14612-14616.	3.1	72
77	2D materials for 1D electrochemical energy storage devices. Energy Storage Materials, 2019, 19, 102-123.	18.0	71
78	Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8, nwaa261.	9.5	71
79	Synthesis of uniform diameter single wall carbon nanotubes inBCo-MCM-41: effects of CO pressure and reaction time. Journal of Catalysis, 2004, 226, 351-362.	6.2	66
80	The effect of the cobalt loading on the growth of single wall carbon nanotubes by CO disproportionation on Co-MCM-41 catalysts. Carbon, 2006, 44, 67-78.	10.3	64
81	Toward High-Performance Solution-Processed Carbon Nanotube Network Transistors by Removing Nanotube Bundles. Journal of Physical Chemistry C, 2008, 112, 12089-12091.	3.1	64
82	Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: Modified synthesis and its catalytic application. Journal of Colloid and Interface Science, 2009, 333, 317-323.	9.4	62
83	Facile fabrication of Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing. Talanta, 2016, 159, 280-286.	5 . 5	62
84	Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds. Applied and Environmental Microbiology, 2018, 84, .	3.1	61
85	Effect of different catalyst supports on the (n,m) selective growth of single-walled carbon nanotube from Co–Mo catalyst. Journal of Materials Science, 2009, 44, 3285-3295.	3.7	60
86	Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2021, 213, 113056.	5. 5	60
87	The Mechanism of Single-Walled Carbon Nanotube Growth and Chirality Selection Induced by Carbon Atom and Dimer Addition. ACS Nano, 2010, 4, 939-946.	14.6	59
88	Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem, 2021, 3, 100055.	19.1	59
89	Influence of graphene oxide lateral size on the properties and performances of forward osmosis membrane. Desalination, 2020, 484, 114421.	8.2	58
90	Mechanism of Cobalt Cluster Size Control in Co-MCM-41 during Single-Wall Carbon Nanotubes Synthesis by CO Disproportionation. Journal of Physical Chemistry B, 2004, 108, 15565-15571.	2.6	57

#	Article	IF	Citations
91	Selective Enrichment of $(6,5)$ and $(8,3)$ Single-Walled Carbon Nanotubes via Cosurfactant Extraction from Narrow $(\langle i\rangle n\langle i\rangle,\langle i\rangle m\langle i\rangle)$ Distribution Samples. Journal of Physical Chemistry B, 2008, 112, 2771-2774.	2.6	57
92	Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting. Materials Chemistry Frontiers, 2018, 2, 102-111.	5.9	57
93	A Flexible Rechargeable Zinc–Air Battery with Excellent Lowâ€√emperature Adaptability. Angewandte Chemie, 2020, 132, 4823-4829.	2.0	57
94	Low-Defect, Purified, Narrowly (n,m)-Dispersed Single-Walled Carbon Nanotubes Grown from Cobalt-Incorporated MCM-41. ACS Nano, 2007, 1, 327-336.	14.6	56
95	Application of a novel redox-active electrolyte in MnO2-based supercapacitors. Science China Chemistry, 2012, 55, 1319-1324.	8.2	56
96	Synthesis of tetrahexahedral Au-Pd core–shell nanocrystals and reduction of graphene oxide for the electrochemical detection of epinephrine. Journal of Colloid and Interface Science, 2018, 512, 812-818.	9.4	56
97	Energy Transfer from Photo-Excited Fluorene Polymers to Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14946-14952.	3.1	54
98	Big to Small: Ultrafine Mo ₂ C Particles Derived from Giant Polyoxomolybdate Clusters for Hydrogen Evolution Reaction. Small, 2019, 15, e1900358.	10.0	53
99	Highly dispersed manganese oxide catalysts grafted on SBA-15: Synthesis, characterization and catalytic application in trans-stilbene epoxidation. Microporous and Mesoporous Materials, 2010, 132, 501-509.	4.4	52
100	A core-sheath holey graphene/graphite composite fiber intercalated with MoS2 nanosheets for high-performance fiber supercapacitors. Electrochimica Acta, 2019, 305, 493-501.	5.2	51
101	Solutionâ€Processable Carbon Nanotubes for Semiconducting Thinâ€Film Transistor Devices. Advanced Materials, 2010, 22, 1278-1282.	21.0	50
102	Probing the Diameter Limit of Single Walled Carbon Nanotubes in SWCNT: Fullerene Solar Cells. Advanced Energy Materials, 2016, 6, 1600890.	19.5	50
103	The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon, 2019, 148, 277-289.	10.3	50
104	Highly enantioselective electrosynthesis of C2-quaternary indolin-3-ones. Chemical Communications, 2020, 56, 623-626.	4.1	50
105	Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomaterialia, 2022, 140, 102-115.	8.3	48
106	Direct synthesis of highly ordered Co-SBA-15 mesoporous materials by the pH-adjusting approach. Microporous and Mesoporous Materials, 2008, 110, 347-354.	4.4	47
107	Octahedral Coordinated Trivalent Cobalt Enriched Multimetal Oxygenâ€Evolution Catalysts. Advanced Energy Materials, 2020, 10, 2002593.	19.5	47
108	Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sensors and Actuators B: Chemical, 2020, 319, 128243.	7.8	46

#	Article	IF	Citations
109	Graphene oxide laminates intercalated with 2D covalent-organic frameworks as a robust nanofiltration membrane. Journal of Materials Chemistry A, 2020, 8, 9713-9725.	10.3	46
110	Pore Curvature Effect on the Stability of Coâ^'MCM-41 and the Formation of Size-Controllable Subnanometer Co Clustersâ€. Journal of Physical Chemistry B, 2005, 109, 2285-2294.	2.6	45
111	Milk powder-derived bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 2018, 11, 134-143.	18.0	45
112	Synthesis of large pore-diameter SBA-15 mesostructured spherical silica and its application in ultra-high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 7767-7773.	3.7	44
113	Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors. Electrochimica Acta, 2012, 78, 122-132.	5.2	44
114	Microbe-derived carbon materials for electrical energy storage and conversion. Journal of Energy Chemistry, 2016, 25, 191-198.	12.9	44
115	Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 15951-15961.	10.3	43
116	Drying graphene hydrogel fibers for capacitive energy storage. Carbon, 2020, 164, 100-110.	10.3	43
117	Bacterial physiology is a key modulator of the antibacterial activity of graphene oxide. Nanoscale, 2016, 8, 17181-17189.	5.6	42
118	Assembly of pi-functionalized quaternary ammonium compounds with graphene hydrogel for efficient water disinfection. Journal of Colloid and Interface Science, 2019, 535, 149-158.	9.4	41
119	The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Znâ€ [°] air batteries. Journal of Materials Chemistry A, 2020, 8, 7297-7308.	10.3	41
120	Effect of Co-MCM-41 Conversion to Cobalt Silicate for Catalytic Growth of Single Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 20095-20101.	2.6	40
121	Smart in situ construction of NiS/MoS2 composite nanosheets with ultrahigh specific capacity for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 811, 151915.	5.5	39
122	CoSO4/SiO2 catalyst for selective synthesis of (9, 8) single-walled carbon nanotubes: Effect of catalyst calcination. Journal of Catalysis, 2013, 300, 91-101.	6.2	38
123	PilG is Involved in the Regulation of Twitching Motility and Antifungal Antibiotic Biosynthesis in the Biological Control Agent <i>Lysobacter enzymogenes</i> . Phytopathology, 2015, 105, 1318-1324.	2.2	37
124	Antimicrobial graphene materials: the interplay of complex materials characteristics and competing mechanisms. Biomaterials Science, 2018, 6, 766-773.	5.4	37
125	Boosting Secretion of Extracellular Protein by Escherichia coli via Cell Wall Perturbation. Applied and Environmental Microbiology, 2018, 84, .	3.1	37
126	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	14.9	37

#	Article	IF	Citations
127	Hierarchical honeycomb graphene aerogels reinforced by carbon nanotubes with multifunctional mechanical and electrical properties. Carbon, 2021, 175, 312-321.	10.3	37
128	Graphene layers on Cu and Ni (111) surfaces in layer controlled graphene growth. RSC Advances, 2013, 3, 3046.	3.6	36
129	Systematic Review of Evidence-Based Guidelines on Medication Therapy for Upper Respiratory Tract Infection in Children with AGREE Instrument. PLoS ONE, 2014, 9, e87711.	2.5	36
130	Nanocarbon materials in water disinfection: state-of-the-art and future directions. Nanoscale, 2019, 11, 9819-9839.	5.6	35
131	Highly stereoselective construction of polycyclic benzofused tropane scaffolds and their latent bioactivities: bifunctional phosphonium salt-enabled cyclodearomatization process. Science China Chemistry, 2020, 63, 1091-1099.	8.2	35
132	Activity and stability comparison of immobilized NADH oxidase on multi-walled carbon nanotubes, carbon nanospheres, and single-walled carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 120-126.	1.8	34
133	Multifunctional nitrogen-rich "brick-and-mortar―carbon as high performance supercapacitor electrodes and oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2013, 1, 11061.	10.3	34
134	Hydrothermal assembly of micro-nano-integrated core-sheath carbon fibers for high-performance all-carbon micro-supercapacitors. Energy Storage Materials, 2017, 9, 221-228.	18.0	34
135	The effect of synthesis solution pH on the physicochemical properties of Co substituted MCM-41. Topics in Catalysis, 2005, 34, 31-40.	2.8	33
136	Monodispersed MCM-41 large particles by modified pseudomorphic transformation: Direct diamine functionalization and application in protein bioseparation. Microporous and Mesoporous Materials, 2009, 122, 114-120.	4.4	33
137	Hybrid ternary rice paper–manganese oxide–carbon nanotube nanocomposites for flexible supercapacitors. Nanoscale, 2013, 5, 11108.	5.6	33
138	An ultra-sensitive Au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions. Materials Science and Engineering C, 2017, 75, 175-181.	7.3	33
139	Novel Poly(I-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity. Journal of Colloid and Interface Science, 2017, 507, 344-352.	9.4	33
140	Materials for pulpotomy in immature permanent teeth: a systematic review and meta-analysis. BMC Oral Health, 2019, 19, 227.	2.3	33
141	Highly selective removal and recovery of Ni(II) from aqueous solution using magnetic ion-imprinted chitosan nanoparticles. Carbohydrate Polymers, 2021, 271, 118435.	10.2	33
142	Atomic carbon adsorption on Ni nanoclusters: a DFT study. Theoretical Chemistry Accounts, 2011, 128, 17-24.	1.4	32
143	"Smart poisoning―of Co/SiO2catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes. Nanoscale, 2016, 8, 17705-17713.	5.6	32
144	Effect of repeated cryopreservation on human embryo developmental potential. Reproductive BioMedicine Online, 2017, 35, 627-632.	2.4	32

#	Article	IF	CITATIONS
145	2D Material Based Advanced Membranes for Separations in Organic Solvents. Small, 2020, 16, e2003400.	10.0	31
146	Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials. Nanotechnology, 2010, 21, 165103.	2.6	30
147	Synergism of Water Shock and a Biocompatible Block Copolymer Potentiates the Antibacterial Activity of Graphene Oxide. Small, 2016, 12, 951-962.	10.0	30
148	Controlling water transport in carbon nanotubes. Nano Today, 2017, 14, 13-15.	11.9	30
149	Tuning crystallization and morphology of zinc oxide with polyvinylpyrrolidone: Formation mechanisms and antimicrobial activity. Journal of Colloid and Interface Science, 2019, 546, 43-52.	9.4	30
150	Synthesis of noble metal-based intermetallic electrocatalysts by space-confined pyrolysis: Recent progress and future perspective. Journal of Energy Chemistry, 2021, 60, 61-74.	12.9	30
151	High Selectivity cum Yield Gel Electrophoresis Separation of Single-Walled Carbon Nanotubes Using a Chemically Selective Polymer Dispersant. Journal of Physical Chemistry C, 2012, 116, 10266-10273.	3.1	29
152	Pressure-retarded membrane distillation for simultaneous hypersaline brine desalination and low-grade heat harvesting. Journal of Membrane Science, 2020, 597, 117765.	8.2	29
153	Zinc–Air Battery-Based Desalination Device. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25728-25735.	8.0	29
154	Acetoneâ€Induced Graphene Oxide Film Formation at the Water–Air Interface. Chemistry - an Asian Journal, 2013, 8, 437-443.	3.3	28
155	Non-covalent synthesis of thermo-responsive graphene oxide–perylene bisimides-containing poly(N-isopropylacrylamide) hybrid for organic pigment removal. Journal of Colloid and Interface Science, 2014, 430, 121-128.	9.4	28
156	Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation. Nanoscale, 2017, 9, 11640-11646.	5.6	28
157	Foldable and scrollable graphene paper with tuned interlayer spacing as high areal capacity anodes for sodium-ion batteries. Energy Storage Materials, 2021, 41, 395-403.	18.0	28
158	A nanocomposite-based electrochemical sensor for non-enzymatic detection of hydrogen peroxide. Oncotarget, 2017, 8, 13039-13047.	1.8	28
159	Enrichment of (8,4) Singleâ€Walled Carbon Nanotubes Through Coextraction with Heparin. Small, 2010, 6, 110-118.	10.0	27
160	Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting. Inorganic Chemistry Frontiers, 2019, 6, 2686-2695.	6.0	27
161	Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation. Journal of Membrane Science, 2019, 579, 90-101.	8.2	27
162	Ultralow-platinum-loading nanocarbon hybrids for highly sensitive hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2019, 283, 304-311.	7.8	27

#	Article	IF	CITATIONS
163	How Is Cycle Life of Three-Dimensional Zinc Metal Anodes with Carbon Fiber Backbones Affected by Depth of Discharge and Current Density in Zinc–Ion Batteries?. ACS Applied Materials & Depth 2022, 14, 12323-12330.	8.0	27
164	Single-wall carbon nanotube synthesis by CO disproportionation on nickel-incorporated MCM-41. Nanotechnology, 2005, 16, S476-S483.	2.6	26
165	Effect of Centrifugation on the Purity of Single-Walled Carbon Nanotubes from MCM-41 Containing Cobalt. Journal of Physical Chemistry C, 2008, 112, 17567-17575.	3.1	26
166	Sulfur-induced chirality changes in single-walled carbon nanotube synthesis by ethanol chemical vapor deposition on a Co/SiO ₂ catalyst. Journal of Materials Chemistry A, 2015, 3, 3310-3319.	10.3	26
167	Synthesis of Pb nanowires-Au nanoparticles nanostructure decorated with reduced graphene oxide for electrochemical sensing. Talanta, 2017, 165, 604-611.	5.5	26
168	Ultrafast hydrothermal assembly of nanocarbon microfibers in near-critical water for 3D microsupercapacitors. Carbon, 2018, 132, 698-708.	10.3	26
169	A novel synthesis route for bimetallic CoCr–MCM-41 catalysts with higher metal loadings. Their application in the high yield, selective synthesis of Single-Wall Carbon Nanotubes. Journal of Catalysis, 2010, 271, 358-369.	6.2	25
170	Recognition of carbon nanotube chirality by phage display. RSC Advances, 2012, 2, 1466-1476.	3.6	25
171	Sulfur doped Co/SiO ₂ catalysts for chirally selective synthesis of single walled carbon nanotubes. Chemical Communications, 2013, 49, 2031-2033.	4.1	25
172	Piwil2 Inhibits Keratin 8 Degradation through Promoting p38-Induced Phosphorylation To Resist Fas-Mediated Apoptosis. Molecular and Cellular Biology, 2014, 34, 3928-3938.	2.3	25
173	Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: a review of design strategies. Nanoscale Horizons, 2022, 7, 463-479.	8.0	25
174	Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration. Applied Microbiology and Biotechnology, 2012, 94, 1233-1241.	3.6	24
175	Biofilm-Templated Heteroatom-Doped Carbon–Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24018-24026.	8.0	24
176	The tripartite role of 2D covalent organic frameworks in graphene-based organic solvent nanofiltration membranes. Matter, 2021, 4, 2953-2969.	10.0	24
177	Assemble 2D redox-active covalent organic framework/graphene hybrids as high-performance capacitive materials. Carbon, 2022, 190, 412-421.	10.3	24
178	Effect of different carbon sources on the growth of single-walled carbon nanotube from MCM-41 containing nickel. Carbon, 2007, 45, 2217-2228.	10.3	23
179	Preparation of large particle MCM-41 and investigation on its fluidization behavior and application in single-walled carbon nanotube production in a fluidized-bed reactor. Chemical Engineering Journal, 2008, 142, 331-336.	12.7	23
180	(9,8) Singleâ€Walled Carbon Nanotube Enrichment via Aqueous Twoâ€Phase Separation and Their Thinâ€Film Transistor Applications. Advanced Electronic Materials, 2015, 1, 1500151.	5.1	23

#	Article	IF	CITATIONS
181	Value of transferring embryos that show no evidence of fertilization at the time of fertilization assessment. Fertility and Sterility, 2015, 104, 607-611.e2.	1.0	23
182	Older Age, Higher Body Mass Index and Inflammation Increase the Risk for New-Onset Diabetes and Impaired Glucose Tolerance in Patients on Peritoneal Dialysis?. Peritoneal Dialysis International, 2016, 36, 277-283.	2.3	23
183	Metallicityâ€Dependent Ultrafast Water Transport in Carbon Nanotubes. Small, 2020, 16, e1907575.	10.0	23
184	Core-shell structured graphene aerogels with multifunctional mechanical, thermal and electromechanical properties. Carbon, 2020, 162, 365-374.	10.3	23
185	X-ray Absorption Spectroscopic Investigation of Partially Reduced Cobalt Species in Coâ^'MCM-41 Catalysts during Synthesis of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 16332-16339.	2.6	22
186	The Reduction in the IgE-Binding Ability of \hat{l}^2 -Lactoglobulin by Dynamic High-Pressure Microfluidization Coupled with Glycation Treatment Revealed by High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 6179-6187.	5.2	22
187	A novel catalase mimicking nanocomposite of Mn(II)-poly-L-histidine-carboxylated multi walled carbon nanotubes and the application to hydrogen peroxide sensing. Analytical Biochemistry, 2019, 567, 51-62.	2.4	22
188	Charge Transfer between Metal Clusters and Growing Carbon Structures in Chirality-Controlled Single-Walled Carbon Nanotube Growth. Journal of Physical Chemistry Letters, 2011, 2, 1009-1014.	4.6	21
189	Reactive Sites for Chiral Selective Growth of Single-Walled Carbon Nanotubes: A DFT Study of Ni ₅₅ –C _{<i>n</i>} Complexes. Journal of Physical Chemistry A, 2012, 116, 11709-11717.	2.5	21
190	Identification of a hot-spot to enhance <i>Candida rugosa</i> liplase thermostability by rational design methods. RSC Advances, 2018, 8, 1948-1957.	3.6	21
191	Selective synthesis of single walled carbon nanotubes on metal (iron, nickel or cobalt) sulfate-based catalysts. Carbon, 2018, 129, 128-136.	10.3	21
192	Degradation: A critical challenge for M–N–C electrocatalysts. Journal of Energy Chemistry, 2021, 63, 667-674.	12.9	21
193	Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes. Scientific Reports, 2015, 5, 17883.	3.3	20
194	Construction of Unconventional Hexapod-like Tellurium Nanostructure with Morphology-Dependent Photoluminescence Property. Journal of Physical Chemistry C, 2009, 113, 9502-9508.	3.1	19
195	Increase in the yield of (and selective synthesis of large-diameter) single-walled carbon nanotubes through water-assisted ethanol pyrolysis. Journal of Catalysis, 2014, 309, 419-427.	6.2	19
196	Impact of Sublethal Levels of Single-Wall Carbon Nanotubes on Pyoverdine Production in <i>Pseudomonas aeruginosa </i> and Its Environmental Implications. Environmental Science and Technology Letters, 2015, 2, 105-111.	8.7	19
197	Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices. ACS Nano, 2020, 14, 2709-2717.	14.6	19
198	The associations of plant-based protein intake with all-cause and cardiovascular mortality in patients on peritoneal dialysis. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 967-976.	2.6	19

#	Article	IF	CITATIONS
199	Carbon science perspective in 2022: Current research and future challenges. Carbon, 2022, 195, 272-291.	10.3	19
200	Use of a Chondroitin Sulfate Isomer as an Effective and Removable Dispersant of Singleâ€Walled Carbon Nanotubes. Small, 2011, 7, 2758-2768.	10.0	18
201	Extraction of (9,8) Singleâ€Walled Carbon Nanotubes by Fluoreneâ€Based Polymers. Chemistry - an Asian Journal, 2014, 9, 868-877.	3.3	18
202	E. coli-derived carbon with nitrogen and phosphorus dual functionalities for oxygen reduction reaction. Catalysis Today, 2015, 249, 228-235.	4.4	18
203	Thermo-osmosis-Coupled Thermally Regenerative Electrochemical Cycle for Efficient Lithium Extraction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6276-6285.	8.0	18
204	Photoconductivity from Carbon Nanotube Transistors Activated by Photosensitive Polymers. Journal of Physical Chemistry C, 2008, 112, 18201-18206.	3.1	17
205	Assessment of (n,m) Selectively Enriched Small Diameter Single-Walled Carbon Nanotubes by Density Differentiation from Cobalt-Incorporated MCM-41 for Macroelectronics. Chemistry of Materials, 2008, 20, 7417-7424.	6.7	17
206	Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices. Nanoscale, 2011, 3, 1845.	5.6	17
207	High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes. Chemical Engineering Journal, 2021, 415, 129003.	12.7	17
208	Application of the Generalized 2D Correlation Analysis to Dynamic Near-Edge X-ray Absorption Spectroscopy Data. Journal of the American Chemical Society, 2005, 127, 1906-1912.	13.7	16
209	Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon, 2014, 66, 134-143.	10.3	16
210	Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor. Journal of Solid State Chemistry, 2015, 224, 45-51.	2.9	16
211	Cobalt Nanoparticles Confined in Carbon Cages Derived from Zeolitic Imidazolate Frameworks as Efficient Oxygen Electrocatalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 355-363.	4.7	16
212	Biomass-derived nanocarbon materials for biological applications: challenges and prospects. Journal of Materials Chemistry B, 2020, 8, 9668-9678.	5.8	16
213	Enhanced Antibacterial Activity of Indocyanine Green-Loaded Graphene Oxide via Synergistic Contact Killing, Photothermal and Photodynamic Therapy. Journal of Biomedical Nanotechnology, 2022, 18, 185-192.	1.1	16
214	Species-Dependent Energy Transfer of Surfactant-Dispersed Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 20061-20065.	3.1	15
215	Nickel hydroxide–carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances. Nanotechnology, 2015, 26, 314003.	2.6	15
216	Spray drying assisted synthesis of porous carbons from whey powders for capacitive energy storage. Energy, 2018, 147, 308-316.	8.8	15

#	Article	IF	Citations
217	Copper (II)-ploy-L-histidine functionalized multi walled carbon nanotubes as efficient mimetic enzyme for sensitive electrochemical detection of salvianic acid A. Biosensors and Bioelectronics, 2018, 121, 257-264.	10.1	15
218	Charge-induced conductance modulation of carbon nanotube field effect transistor memory devices. Carbon, 2009, 47, 3063-3070.	10.3	14
219	Sorting of Single-Walled Carbon Nanotubes Based on Metallicity by Selective Precipitation with Polyvinylpyrrolidone. Journal of Physical Chemistry C, 2011, 115, 5199-5206.	3.1	14
220	Perylene bisimide-incorporated water-soluble polyurethanes for living cell fluorescence labeling. Polymer, 2016, 82, 172-180.	3.8	14
221	Controlling of Physicochemical Properties of Nickel-Substituted MCM-41 by Adjustment of the Synthesis Solution pH and Tetramethylammonium Silicate Concentration. Journal of Physical Chemistry B, 2006, 110, 5927-5935.	2.6	13
222	Preparation of spherical large-particle MCM-41 with a broad particle-size distribution by a modified pseudomorphic transformation. Microporous and Mesoporous Materials, 2009, 121, 73-78.	4.4	13
223	Selective Small-Diameter Metallic Single-Walled Carbon Nanotube Removal by Mere Standing with Anthraquinone and Application to a Field-Effect Transistor. Journal of Physical Chemistry C, 2010, 114, 21035-21041.	3.1	13
224	Influence of <i>inÂvitro</i> gastrointestinal digestion on the bioavailability and antioxidant activity of polyphenols from <i>lpomoea batatas</i> leaves. International Journal of Food Science and Technology, 2017, 52, 1131-1137.	2.7	13
225	Clinical evidence of photobiomodulation therapy (PBMT) on implant stability and success: a systematic review and meta-analysis. BMC Oral Health, 2019, 19, 77.	2.3	13
226	Aggregation-Dependent Photoluminescence Sidebands in Single-Walled Carbon Nanotube. Journal of Physical Chemistry C, 2010, 114, 6704-6711.	3.1	12
227	Carbon composite membranes for thermal-driven membrane processes. Carbon, 2021, 179, 600-626.	10.3	12
228	Statistical design of C10-Co-MCM-41 catalytic template for synthesizing smaller-diameter single-wall carbon nanotubes. Microporous and Mesoporous Materials, 2005, 86, 303-313.	4.4	11
229	Length-dependent performances of sodium deoxycholate-dispersed single-walled carbon nanotube thin-film transistors. Journal of Materials Research, 2013, 28, 1004-1011.	2.6	11
230	Highâ€Performance Partially Printed Hybrid CMOS Inverters Based on Indiumâ€Zincâ€Oxide and Chirality Enriched Carbon Nanotube Thinâ€Film Transistors. Advanced Electronic Materials, 2019, 5, 1900034.	5.1	11
231	Interfacial engineering of graphenic carbon electrodes by antimicrobial polyhexamethylene guanidine hydrochloride for ultrasensitive bacterial detection. Carbon, 2020, 159, 185-194.	10.3	11
232	The cut-off values of handgrip strength and lean mass index for sarcopenia among patients on peritoneal dialysis. Nutrition and Metabolism, 2020, 17, 84.	3.0	11
233	Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells. Science Bulletin, 2012, 57, 2329-2334.	1.7	10
234	Nanoparticle-supported consecutive reactions catalyzed by alkyl hydroperoxide reductase. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 9-14.	1.8	10

#	Article	IF	Citations
235	Novel ^{99m} Tc radiolabeled folate complexes with PEG linkers for FR-positive tumor imaging: synthesis and biological evaluation. RSC Advances, 2014, 4, 32197-32206.	3.6	10
236	Accuracy of Full-Guided and Half-Guided Surgical Templates in Anterior Immediate and Delayed Implantation: A Retrospective Study. Materials, 2021, 14, 26.	2.9	10
237	Graphitic carbon from catalytic methane decomposition as efficient conductive additives for zinc-carbon batteries. Carbon, 2022, 192, 84-92.	10.3	10
238	Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells. Frontiers of Optoelectronics, 2012, 5, 224-230.	3.7	9
239	Novel Equations for Estimating Lean Body Mass in Patients With Chronic Kidney Disease. , 2018, 28, 156-164.		9
240	Polycondensation of a Perylene Bisimide Derivative and L-Malic Acid as Water-Soluble Conjugates for Fluorescent Labeling of Live Mammalian Cells. Polymers, 2018, 10, 559.	4.5	9
241	Synthesis of (9,8) single-walled carbon nanotubes on CoSO4/SiO2 catalysts: The effect of Co mass loadings. Carbon, 2020, 169, 288-296.	10.3	9
242	High-performance Fe–N–C electrocatalysts with a "chain mail―protective shield. Nano Materials Science, 2021, 3, 420-428.	8.8	9
243	Triclosan detoxification through dechlorination and oxidation via microbial Pd-NPs under aerobic conditions. Chemosphere, 2022, 286, 131836.	8.2	9
244	One-dimensional covalent organic frameworkâ€"Carbon nanotube heterostructures for efficient capacitive energy storage. Applied Physics Letters, 2021, 119, .	3.3	9
245	Cellular response of RAW 264.7 to sprayâ€coated multiâ€walled carbon nanotube films with various surfactants. Journal of Biomedical Materials Research - Part A, 2011, 96A, 413-421.	4.0	8
246	PIFA-Mediated Dearomatizative Spirocyclization of Phenolic Biarylic Ketones via Oxidation and C–C Bond Cleavage. Journal of Organic Chemistry, 2020, 85, 9367-9374.	3.2	8
247	Cobalt sulfide catalysts for single-walled carbon nanotube synthesis. Diamond and Related Materials, 2021, 114, 108288.	3.9	8
248	Radius of Curvature Effect on the Selective Oxidation of Cyclohexene Over Highly Ordered V-MCM-41. Catalysis Letters, 2007, 117, 25-33.	2.6	7
249	Cisplatin for testicular germ cell tumors: a rapid review. Journal of Evidence-Based Medicine, 2016, 9, 144-151.	2.4	7
250	Difference in toxicity of Pd (II) and mechanism of action before and after reduction by Bacillus wiedmannii MSM. Environmental Science and Pollution Research, 2022, 29, 1824-1835.	5.3	7
251	Printed thin film transistors with 108 on/off ratios and photoelectrical synergistic characteristics using isoindigo-based polymers-enriched (9,8) carbon nanotubes. Nano Research, 2022, 15, 5517-5526.	10.4	7
252	Uniform Diameter Single Walled Carbon Nanotubes Catalytically Grown in Cobalt-Incorporated MCM-41. Journal of Physical Chemistry B, 2004, 108, 10196-10196.	2.6	6

#	Article	IF	CITATIONS
253	Efficiency improvement of flexible dye-sensitized solar cells by introducing mesoporous TiO2 microsphere. Science China Chemistry, 2013, 56, 1470-1477.	8.2	6
254	Non-syndromic occurrence of true generalized microdontia with hypodontia. Medicine (United) Tj ETQq0 0 0 rgBT	Oyerlock	R 10 Tf 50 7
255	Cardanol-derived cationic surfactants enabling the superior antibacterial activity of single-walled carbon nanotubes. Nanotechnology, 2020, 31, 265603.	2.6	6
256	Novel equation for estimating resting energy expenditure in patients with chronic kidney disease. American Journal of Clinical Nutrition, 2021, 113, 1647-1656.	4.7	6
257	Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production. Chinese Journal of Catalysis, 2022, 43, 1238-1246.	14.0	6
258	<i>IN SITU</i> FORMATION OF COBALT NANOCLUSTERS IN SOL–GEL SILICA FILMS FOR SINGLE-WALLED CARBON NANOTUBE GROWTH. Nano, 2009, 04, 99-106.	1.0	5
259	Chemometric determination of the length distribution of single walled carbon nanotubes through optical spectroscopy. Analytica Chimica Acta, 2011, 708, 28-36.	5.4	5
260	Mechanical reinforcement of polyethylene using <i>n-</i> alkyl group-functionalized multiwalled carbon nanotubes: Effect of alkyl group carbon chain length and density. Polymer Engineering and Science, 2014, 54, 336-344.	3.1	5
261	Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000193.	2.4	5
262	Ionic liquid gating of single-walled carbon nanotube devices with ultra-short channel length down to 10 nm. Applied Physics Letters, 2021, 118, .	3.3	5
263	Preparation and biological evaluation of ^{99m} TcNâ€labeled pteroylâ€lys derivative as a potential folate receptor imaging agent. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 12-17.	1.0	4
264	Associations of Adiponectin, Leptin Levels, and the Change of Body Composition in Patients on Peritoneal Dialysis: A Prospective Cohort Study. Peritoneal Dialysis International, 2018, 38, 278-285.	2.3	4
265	Factors associated with the publication outcomes of paediatric proceedings presented at 2010â€2016 the International Associations for Dental Research annual meetings. International Journal of Paediatric Dentistry, 2020, 30, 110-117.	1.8	3
266	Dualâ€Template Pore Engineering of Whey Powderâ€Derived Carbon as an Efficient Oxygen Reduction Reaction Electrocatalyst for Primary Zincâ€Air Battery. Chemistry - an Asian Journal, 2020, 15, 1881-1889.	3.3	3
267	Capacitive deionization of carbon spheres with a carbon shell derived from the quantum dots of urea-citric acid grown in situ. Diamond and Related Materials, 2021, 116, 108444.	3.9	3
268	Evaluation of Immediate Implantation and Provisionalization Combined with Guided Bone Regeneration by a Flap Approach in the Maxillary Esthetic Zone: A Retrospective Controlled Study. Materials, 2021, 14, 3874.	2.9	2
269	Contact spacing controls the on-current for all-carbon field effect transistors. Communications Physics, 2021, 4, .	5.3	2
270	Effect Analysis of Hyperbaric Oxygen Therapy with Methylprednisolone on Prevention of Spinal Cord Ischemia-Reperfusion Injury. Journal of the College of Physicians and Surgeons-Pakistan: JCPSP, 2019, 29, 1016-1017.	0.4	1

#	Article	IF	CITATIONS
271	Fiber-shaped micro-supercapacitors. , 2022, , 257-271.		1
272	Chirality selective synthesis and enrichment of single walled carbon nanotubes for macroelectronics. , $2011,\ldots$		0
273	Antibacterial performance of graphene oxide complemented with pluronic F-127 on physiologically mature gram-negative bacteria., 2017,,.		0
274	Android Data-Clone Attack via Operating System Customization. IEEE Access, 2020, 8, 199733-199746.	4.2	0