
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1944925/publications.pdf Version: 2024-02-01

NING WEN

#	Article	IF	CITATIONS
1	Antibacterial and Antioxidant Effects of Magnesium Alloy on Titanium Dental Implants. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-9.	0.7	4
2	Graphene-containing metal–organic framework nanocomposites for enhanced microwave ablation of salivary adenoid cystic carcinoma. Nanoscale Advances, 2022, 4, 1308-1317.	2.2	1
3	Hydrogel-based patient-friendly photodynamic therapy of oral potentially malignant disorders. Biomaterials, 2022, 281, 121377.	5.7	21
4	Cannabidiol Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in the Inflammatory Microenvironment via the CB2-dependent p38 MAPK Signaling Pathway. International Journal of Stem Cells, 2022, 15, 405-414.	0.8	9
5	Nimotuzumab shows an additive effect to inhibit cell growth of ALA-PDT treated oral cancer cells. Photodiagnosis and Photodynamic Therapy, 2022, 38, 102817.	1.3	4
6	Protective Effects of Cannabidiol on Chemotherapy-Induced Oral Mucositis via the Nrf2/Keap1/ARE Signaling Pathways. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-20.	1.9	6
7	Effect of colourants on the optical characteristics and structure of Y 2 O 3 stabilised tetragonal zirconia ceramic. Coloration Technology, 2021, 137, 493-502.	0.7	0
8	Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment. Biomaterials, 2021, 276, 121016.	5.7	20
9	The use of topical ALA-photodynamic therapy combined with induction chemotherapy for locally advanced oral squamous cell carcinoma. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2021, 42, 103112.	0.6	12
10	Characterization of Cancer Stem Cell Characteristics and Development of a Prognostic Stemness Index Cell-Related Signature in Oral Squamous Cell Carcinoma. Disease Markers, 2021, 2021, 1-27.	0.6	2
11	Neuregulin 4 alleviates hepatic steatosis via activating AMPK/mTOR-mediated autophagy in aged mice fed a high fat diet. European Journal of Pharmacology, 2020, 884, 173350.	1.7	14
12	Integration of Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomes with Hydroxyapatite-Embedded Hyaluronic Acid-Alginate Hydrogel for Bone Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 1590-1602.	2.6	99
13	Correlation of carbonic anhydrase 9 (CA9) with pathological T-stage and prognosis in patients with oral tongue squamous cell carcinoma. Annals of Translational Medicine, 2020, 8, 1521.	0.7	1
14	Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration. Cell and Tissue Banking, 2019, 20, 209-220.	0.5	18
15	The synthesis and application of nano doxorubicin-indocyanine green matrix metalloproteinase-responsive hydrogel in chemophototherapy for head and neck squamous cell carcinoma. International Journal of Nanomedicine, 2019, Volume 14, 623-638.	3.3	31
16	Synthesis and Evaluation of a Novel Small-molecule Compound as an Anticancer Inhibitor of CD147. Biomedical and Environmental Sciences, 2019, 32, 673-686.	0.2	5
17	Triptolide reduces proliferation and enhances apoptosis in drug-resistant human oral cancer cells. International Journal of Clinical and Experimental Pathology, 2019, 12, 1204-1213.	0.5	2
18	FoxM1 promotes epithelial–mesenchymal transition, invasion, and migration of tongue squamous cell carcinoma cells through a c-Met/AKT-dependent positive feedback loop. Anti-Cancer Drugs, 2018, 29, 216-226.	0.7	30

NING WEN

#	Article	IF	CITATIONS
19	pH-Responsive Polycarbonate Copolymer-based Nanoparticles for Targeted Anticancer Drug Delivery. Chemical Research in Chinese Universities, 2018, 34, 1041-1050.	1.3	3
20	MiR-92a regulates oral squamous cell carcinoma (OSCC) cell growth by targeting FOXP1 expression. Biomedicine and Pharmacotherapy, 2018, 104, 77-86.	2.5	20
21	ADAM17 promotes cell migration and invasion through the integrin β1 pathway in hepatocellular carcinoma. Experimental Cell Research, 2018, 370, 373-382.	1.2	27
22	Association between periodontitis and peripheral artery disease: a systematic review and meta-analysis. BMC Cardiovascular Disorders, 2018, 18, 141.	0.7	42
23	Facile Preparation of Controllable-Aspect-Ratio Hydroxyapatite Nanorods with High-Gravity Technology for Bone Tissue Engineering. Industrial & Engineering Chemistry Research, 2017, 56, 2976-2983.	1.8	17
24	Enamel matrix derivative enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells on the titanium implant surface. Organogenesis, 2017, 13, 103-113.	0.4	19
25	Dual redox-responsive PEC–PPS–cRGD self-crosslinked nanocapsules for targeted chemotherapy of squamous cell carcinoma. RSC Advances, 2017, 7, 53552-53562.	1.7	6
26	<i>In situ</i> incorporation of monodisperse drug nanoparticles into hydrogel scaffolds for hydrophobic drug release. Journal of Applied Polymer Science, 2016, 133, .	1.3	2
27	Deubiquitinase MYSM1 Is Essential for Normal Bone Formation and Mesenchymal Stem Cell Differentiation. Scientific Reports, 2016, 6, 22211.	1.6	28
28	A20 plays a critical role in the immunoregulatory function of mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2016, 20, 1550-1560.	1.6	19
29	Preparation and characterization of calcium phosphate/pectin scaffolds for bone tissue engineering. RSC Advances, 2016, 6, 62071-62082.	1.7	31
30	Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide). International Journal of Molecular Medicine, 2016, 37, 1475-1486.	1.8	33
31	Role of Endothelial Progenitor Cells in Maintaining Stemness and Enhancing Differentiation of Mesenchymal Stem Cells by Indirect Cell–Cell Interaction. Stem Cells and Development, 2016, 25, 123-138.	1.1	25
32	FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription. Oncotarget, 2016, 7, 47985-47997.	0.8	48
33	FOXM1 confers resistance to gefitinib in lung adenocarcinoma via a MET/AKT-dependent positive feedback loop. Oncotarget, 2016, 7, 59245-59259.	0.8	15
34	Effect of coloration with various metal oxides on zirconia. Coloration Technology, 2015, 131, 27-31.	0.7	3
35	Contrast Investigation on Relative Translucency of Four Ultra-Transparent Dental Zirconia Materials after Veneered. Key Engineering Materials, 2015, 655, 118-121.	0.4	0
36	Effect of Background Color to the Final Color of Four Highly Transparent Ceramics after Veneered. Key Engineering Materials, 2015, 655, 122-125.	0.4	0

NING WEN

#	Article	IF	CITATIONS
37	SOCS1 Regulates the Immune Modulatory Properties of Mesenchymal Stem Cells by Inhibiting Nitric Oxide Production. PLoS ONE, 2014, 9, e97256.	1.1	19
38	Overexpression of FOXM1 predicts poor prognosis and promotes cancer cell proliferation, migration and invasion in epithelial ovarian cancer. Journal of Translational Medicine, 2014, 12, 134.	1.8	88
39	CCR7 Expressing Mesenchymal Stem Cells Potently Inhibit Graft-versus-Host Disease by Spoiling the Fourth Supplemental Billingham's Tenet. PLoS ONE, 2014, 9, e115720.	1.1	5
40	Effects of Alveolar Bone Loss and Post-Core Design on Stress Distribution of Severely Damaged Canine. Key Engineering Materials, 2012, 512-515, 1770-1774.	0.4	0
41	Bond Strength of Veneering Ceramics to a Graded Zirconia Core. Advanced Materials Research, 2012, 624, 221-225.	0.3	1
42	The Influence of Background Color to 3 All-Ceramic System Core Materials. Key Engineering Materials, 2012, 512-515, 1788-1792.	0.4	0
43	Masking Ability of IPS e.max ALL-Ceramics System of HO Series. Key Engineering Materials, 2012, 512-515, 1784-1787.	0.4	2
44	Comparing Study on Translucency of Four Veneered Dental All-Ceramic Core Materials. Advanced Materials Research, 2012, 624, 235-238.	0.3	0
45	Effect of Zirconia Surface Roughness on Shear Bond Strength to Resin Cements. Key Engineering Materials, 2012, 512-515, 1765-1769.	0.4	1
46	The Transmittance Test of 3 All-Ceramic System Core Materials. Key Engineering Materials, 2012, 512-515, 1793-1796.	0.4	0
47	Spectral Transmittance of Six All-Ceramic Core Materials after Veneering Ceramic. Advanced Materials Research, 2011, 412, 352-355.	0.3	0
48	Comparison of the Low Temperature Degradation Properties of Two Y-TZP Ceramics for Dental Applications. Key Engineering Materials, 2011, 492, 107-111.	0.4	1
49	Effect of Background Color on In-Ceram and Cercon All-Ceramic Core Material. Advanced Materials Research, 2011, 412, 356-360.	0.3	0
50	Influence of Multiple Firing on the Bending Strength of Zirconia/Porcelain Bilayered Dental Ceramics. Key Engineering Materials, 2011, 492, 24-29.	0.4	2
51	Effects of Surface Treatment on the Microstructural and Crystallographic Changes of Dental 3Y-TZP Ceramic. Key Engineering Materials, 2011, 492, 66-70.	0.4	1
52	Biological Safety Assessment of a Colored Zirconia Ceramic: Cell Toxicity and Skin Sensitivity Tests. Key Engineering Materials, 2011, 492, 509-512.	0.4	0
53	Mechanical Properties of Y-TZP Ceramic after Different Surface Treatments. Key Engineering Materials, 2011, 492, 71-74.	0.4	2
54	Soak Colored Zirconia Ceramics and its Colorimetric Plate. Key Engineering Materials, 2011, 492, 362-365.	0.4	1

#	Article	IF	CITATIONS
55	A New Type of Colored Alumina/Glass Composite Biological Safety Assessment - Oral Mucous Membrane Irritation and Skin Sensitivity Tests. Advanced Materials Research, 2010, 177, 462-465.	0.3	0
56	Test of Relative Translucency for Three Veneered All-Ceramic Systems Core Material. Advanced Materials Research, 2010, 177, 302-305.	0.3	2
57	Effects of Presintering Temperature and Heating Rate on the Physical and Mechanical Properties of Alumina-Glass-Composites. Advanced Materials Research, 2010, 105-106, 549-552.	0.3	0
58	Influence of Background Color on the Chromatic Value of Four All-Ceramic System Core Materials. Advanced Materials Research, 2010, 105-106, 546-548.	0.3	13
59	Influence of Background Material on 3 Veneered All-Ceramic Core Materials. Advanced Materials Research, 2010, 177, 293-297.	0.3	0
60	Influence of Different Ceric Oxide and Ferric Oxide Content on the Color of Alumina-Glass-Composites Restoration. Advanced Materials Research, 2010, 105-106, 536-538.	0.3	0
61	Study on Dental Colored Zirconia Restoration. Key Engineering Materials, 2008, 368-372, 1255-1257.	0.4	3
62	Strength and Fracture Mode for Dental Colored ZrO ₂ Ceramics Coated with Dental Porcelain. Key Engineering Materials, 2008, 368-372, 1248-1251.	0.4	2
63	Relative Translucency Test of 3 All-Ceramics System Core Material. Advanced Materials Research, 0, 177, 298-301.	0.3	4
64	Effects of Veneering Porcelain Type on Bending Strength of Dental Y-TZP/Porcelain Bilayered Structure. Advanced Materials Research, 0, 105-106, 524-527.	0.3	0
65	A New Type of Colored Alumina/Glass Composite Biological Safety Assessment – Cell Toxicity and Hemolysis Tests. Advanced Materials Research, 0, 177, 459-461.	0.3	0
66	Effects of Aging on the Mechanical Properties of Dental Pigmented 3Y-TZP Ceramics. Advanced Materials Research, 0, 177, 136-139.	0.3	2
67	The Color of Fe ₂ O ₃ and Bi ₂ O ₃ Pigmented Dental Zirconia Ceramic. Key Engineering Materials, 0, 434-435, 582-585.	0.4	18
68	Evaluation of Glass Infiltration Speed within Dental CAD/CAM Alumina at Different Temperatures. Advanced Materials Research, 0, 177, 314-317.	0.3	0
69	Binding Performance of a Zirconia Framework Material and Veneering Porcelain. Advanced Materials Research, 0, 177, 186-189.	0.3	4
70	Effect of Pigmentation on Strength of Dental Y-TZP/Porcelain Bilayered Structure. Advanced Materials Research, 0, 105-106, 520-523.	0.3	3
71	Surface Microhardness and Flexural Strength of Colored Zirconia. Advanced Materials Research, 0, 105-106, 49-50.	0.3	12
72	Microstructure of Interface between Zirconia and Veneer Porcelain. Key Engineering Materials, 0, 492, 55-60.	0.4	1

#	Article	IF	CITATIONS
73	Relative Translucency of IPS E.max LT Core Materials after Veneering and Glazing. Key Engineering Materials, 0, 492, 358-361.	0.4	3
74	Biological Safety Assessment of a Colored Zirconia Ceramic: Hemolysis and Short-Term Systemic Toxicity Tests. Key Engineering Materials, 0, 492, 505-508.	0.4	1
75	Contrast Ratios and Chromatic Value of IPS E.max LT Framework Materials. Key Engineering Materials, 0, 492, 354-357.	0.4	0
76	Measuring the Infinite Optical Thickness of Dentine Porcelain of the IPS E.max. Key Engineering Materials, 0, 492, 349-353.	0.4	2
77	Improving Bioactivity of Porous β-TCP Ceramics by Forming Bone-Like Apatite Layer on the Surfaces of Pore Walls. Key Engineering Materials, 0, 512-515, 1815-1820.	0.4	2
78	Preparation and Properties of Porous β–Tricalcium Phosphate Bone Graft. Advanced Materials Research, 0, 624, 226-230.	0.3	4
79	Relative Translucency of Dental Lithium Disilicate Ceramic Restorations. Key Engineering Materials, 0, 512-515, 1775-1778.	0.4	0
80	Effect of Resin Cements for Porcelain Veneers on the Color Stability after Accelerated Ageing. Advanced Materials Research, 0, 624, 216-220.	0.3	1
81	Matching Ability of Dental Shaded Zirconia Ceramics and Veneering Porcelain. Key Engineering Materials, 0, 512-515, 1751-1755.	0.4	0
82	Affection of Post-Core Materials on the Resultant Color of Lithium Disilicate Ceramic Restorations. Key Engineering Materials, 0, 512-515, 1761-1764.	0.4	0
83	lnï¬,uence of Thickness on Residual Stress Proï¬ l e in Veneering Ceramic Layered: Measurement by Hole-Drilling. Key Engineering Materials, 0, 512-515, 1779-1783.	0.4	0
84	Preparation of Pigmented Glass for Infiltration and Investigation of its Physical and Mechanical Properties. Key Engineering Materials, 0, 512-515, 1802-1806.	0.4	0
85	Comparing Study on Transmittance of Four Dental All-Ceramic Core Material. Advanced Materials Research, 0, 624, 231-234.	0.3	0
86	The Effect of Varying Ferrule Modes on Fracture Resistance of Canines Restored with One-Piece Milled Zirconia Post and Core. Advanced Materials Research, 0, 624, 98-102.	0.3	0
87	Bond Strength of Different Adhesive Luting Materials to Zirconia Ceramics. Key Engineering Materials, 0, 512-515, 447-450.	0.4	0
88	Colorimetric Comparison of Two Kinds of VITA Shade Guides. Key Engineering Materials, 0, 512-515, 1807-1810.	0.4	0
89	Effects of the Mechanical Properties of Veneering Porcelain on Stress Distribution of Dental Zirconia Layered Structure: A Finite Element Model Study. Key Engineering Materials, 0, 512-515, 1797-1801.	0.4	0
90	Influence of Low Temperature Aging on the Flexural Strength of Y-TZP Ceramics. Key Engineering Materials, 0, 512-515, 1756-1760.	0.4	1

#	Article	IF	CITATIONS
91	Comparative Measurement on Transmittance of Four Systems of Dental All-Ceramic Zirconia Materials. Advanced Materials Research, 0, 833, 185-188.	0.3	0
92	Test of Relative Translucency for Four All-Ceramic Core Material after Veneering Ceramic. Key Engineering Materials, 0, 544, 388-391.	0.4	0
93	The Programming of Dentistry CCS/CCM Software. Key Engineering Materials, 0, 544, 502-506.	0.4	Ο
94	Effect of Post-Core Materials on the Color Value of Four Dental All-Ceramic Cores. Key Engineering Materials, 0, 544, 396-400.	0.4	0
95	A Comparative Study on Relative Translucency of Four Dental All-Ceramic Core Materials. Key Engineering Materials, 0, 544, 392-395.	0.4	1
96	A Comparison of the Application between Different Proportional nHA / PLA in Alveolar Bone Preservation. Key Engineering Materials, 0, 602-603, 615-619.	0.4	0