
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1944888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in hybrid photocatalysts for solar fuel production. Energy and Environmental Science, 2012, 5, 5902.	15.6	563
2	Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells. ACS Nano, 2014, 8, 6797-6804.	7.3	427
3	Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy and Environmental Science, 2012, 5, 8912.	15.6	314
4	Cation Substitution of Solutionâ€Processed Cu ₂ ZnSnS ₄ Thin Film Solar Cell with over 9% Efficiency. Advanced Energy Materials, 2015, 5, 1500682.	10.2	295
5	TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy, 2015, 11, 728-735.	8.2	293
6	A cuprous oxide–reduced graphene oxide (Cu2O–rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Nanoscale, 2012, 4, 3875.	2.8	279
7	Perovskite–Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting. Nano Letters, 2015, 15, 3833-3839.	4.5	249
8	Computational Study of Halide Perovskite-Derived A ₂ BX ₆ Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability. Chemistry of Materials, 2017, 29, 7740-7749.	3.2	215
9	Hydrothermal Synthesis of High Electron Mobility Zn-doped SnO ₂ Nanoflowers as Photoanode Material for Efficient Dye-Sensitized Solar Cells. Chemistry of Materials, 2011, 23, 3938-3945.	3.2	206
10	A simple spiro-type hole transporting material for efficient perovskite solar cells. Energy and Environmental Science, 2015, 8, 1986-1991.	15.6	206
11	Improving the Efficiency of Hematite Nanorods for Photoelectrochemical Water Splitting by Doping with Manganese. ACS Applied Materials & Interfaces, 2014, 6, 5852-5859.	4.0	174
12	A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chemical Science, 2013, 4, 164-169.	3.7	148
13	Co ₃ O ₄ -Decorated Hematite Nanorods As an Effective Photoanode for Solar Water Oxidation. Journal of Physical Chemistry C, 2012, 116, 13884-13889.	1.5	141
14	Holeâ€Transporting Small Molecules Based on Thiophene Cores for High Efficiency Perovskite Solar Cells. ChemSusChem, 2014, 7, 3420-3425.	3.6	139
15	A new insight into controlling poly(3-hexylthiophene) nanofiber growth through a mixed-solvent approach for organic photovoltaics applications. Journal of Materials Chemistry, 2011, 21, 377-386.	6.7	138
16	Over 20% Efficient CIGS–Perovskite Tandem Solar Cells. ACS Energy Letters, 2017, 2, 807-812.	8.8	135
17	In situ photo-assisted deposition of MoS2 electrocatalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale, 2013, 5, 1479.	2.8	133
18	Enhancement of Open-Circuit Voltage of Solution-Processed Cu ₂ ZnSnS ₄ Solar Cells with 7.2% Efficiency by Incorporation of Silver. ACS Energy Letters, 2016, 1, 1256-1261.	8.8	133

#	Article	IF	CITATIONS
19	Understanding the Synthetic Pathway of a Single-Phase Quarternary Semiconductor Using Surface-Enhanced Raman Scattering: A Case of Wurtzite Cu ₂ ZnSnS ₄ Nanoparticles. Journal of the American Chemical Society, 2014, 136, 6684-6692.	6.6	129
20	Solvent additives and their effects on blend morphologies of bulk heterojunctions. Journal of Materials Chemistry, 2011, 21, 242-250.	6.7	127
21	Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. Physical Chemistry Chemical Physics, 2012, 14, 11596.	1.3	123
22	Iron based photoanodes for solar fuel production. Physical Chemistry Chemical Physics, 2014, 16, 11834.	1.3	120
23	Facile Water-based Spray Pyrolysis of Earth-Abundant Cu ₂ FeSnS ₄ Thin Films as an Efficient Counter Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17661-17667.	4.0	114
24	Synergistic Effects of Double Cation Substitution in Solutionâ€Processed CZTS Solar Cells with over 10% Efficiency. Advanced Energy Materials, 2018, 8, 1802540.	10.2	113
25	Novel Assembly of an MoS ₂ Electrocatalyst onto a Silicon Nanowire Array Electrode to Construct a Photocathode Composed of Elements Abundant on the Earth for Hydrogen Generation. Chemistry - A European Journal, 2012, 18, 13994-13999.	1.7	109
26	Targeting Ideal Dualâ€Absorber Tandem Water Splitting Using Perovskite Photovoltaics and Culn <i>_x</i> Ga _{1â€<i>x</i>} Se ₂ Photocathodes. Advanced Energy Materials, 2015, 5, 1501520.	10.2	109
27	Solution-Processed Cd-Substituted CZTS Photocathode for Efficient Solar Hydrogen Evolution from Neutral Water. Joule, 2018, 2, 537-548.	11.7	102
28	Doping and alloying of kesterites. JPhys Energy, 2019, 1, 044004.	2.3	102
29	The Role of Poly(3-hexylthiophene) Nanofibers in an All-Polymer Blend with a Polyfluorene Copolymer for Solar Cell Applications. Journal of Physical Chemistry C, 2010, 114, 9459-9468.	1.5	100
30	Crystalline Fe 2 O 3 /Fe 2 TiO 5 heterojunction nanorods with efficient charge separation and hole injection as photoanode for solar water oxidation. Nano Energy, 2016, 22, 310-318.	8.2	100
31	Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials and Solar Cells, 2014, 124, 55-60.	3.0	97
32	Shellfish and House Dust Mite Allergies: Is the Link Tropomyosin?. Allergy, Asthma and Immunology Research, 2016, 8, 101.	1.1	94
33	Silicon Decorated with Amorphous Cobalt Molybdenum Sulfide Catalyst as an Efficient Photocathode for Solar Hydrogen Generation. ACS Nano, 2015, 9, 3829-3836.	7.3	91
34	Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS) _{<i>x</i>} :(ZnS) _{1–<i>x</i>} Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells. Nano Letters, 2016, 16, 1925-1932.	4.5	89
35	Surface treatment of hematite photoanodes with zinc acetate for water oxidation. Nanoscale, 2012, 4, 4430.	2.8	88
36	Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale, 2016, 8, 6352-6360.	2.8	88

#	Article	IF	CITATIONS
37	Applications of atomic layer deposition in solar cells. Nanotechnology, 2015, 26, 064001.	1.3	86
38	Towards high efficiency thin film solar cells. Progress in Materials Science, 2017, 87, 246-291.	16.0	85
39	In Situ Growth of [hk1]â€Oriented Sb ₂ S ₃ for Solutionâ€Processed Planar Heterojunction Solar Cell with 6.4% Efficiency. Advanced Functional Materials, 2020, 30, 2002887.	7.8	85
40	ZnS buffer layer for Cu2ZnSn(SSe)4 monograin layer solar cell. Solar Energy, 2015, 111, 344-349.	2.9	84
41	Two-stage co-evaporated CuSbS2 thin films for solar cells. Journal of Alloys and Compounds, 2016, 680, 182-190.	2.8	83
42	Revealing the Role of TiO ₂ Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. ACS Applied Materials & Interfaces, 2015, 7, 16960-16966.	4.0	81
43	Emerging Chalcogenide Thin Films for Solar Energy Harvesting Devices. Chemical Reviews, 2022, 122, 10170-10265.	23.0	81
44	Electrospun Mo-BiVO4 for Efficient Photoelectrochemical Water Oxidation: Direct Evidence of Improved Hole Diffusion Length and Charge separation. Electrochimica Acta, 2016, 211, 173-182.	2.6	75
45	Hydrothermal Grown Nanoporous Iron Based Titanate, Fe ₂ TiO ₅ for Light Driven Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 22490-22495.	4.0	74
46	Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: Promising structure for sustainable fuel production. International Journal of Hydrogen Energy, 2016, 41, 5865-5877.	3.8	71
47	Atomically Altered Hematite for Highly Efficient Perovskite Tandem Waterâ€Splitting Devices. ChemSusChem, 2017, 10, 2449-2456.	3.6	71
48	Additive Selection Strategy for High Performance Perovskite Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 13884-13893.	1.5	71
49	Ultrafine Gold Nanowire Networks as Plasmonic Antennae in Organic Photovoltaics. Journal of Physical Chemistry C, 2012, 116, 6453-6458.	1.5	69
50	Effect of Perovskite Thickness on Electroluminescence and Solar Cell Conversion Efficiency. Journal of Physical Chemistry Letters, 2020, 11, 8189-8194.	2.1	68
51	Synthesis of Cu(In,Ga)(S,Se) ₂ thin films using an aqueous spray-pyrolysis approach, and their solar cell efficiency of 10.5%. Journal of Materials Chemistry A, 2015, 3, 4147-4154.	5.2	67
52	Enhanced Heterojunction Interface Quality To Achieve 9.3% Efficient Cd-Free Cu ₂ ZnSnS ₄ Solar Cells Using Atomic Layer Deposition ZnSnO Buffer Layer. Chemistry of Materials, 2018, 30, 7860-7871.	3.2	66
53	Suppressed Deep Traps and Bandgap Fluctuations in Cu ₂ CdSnS ₄ Solar Cells with â‰^8% Efficiency. Advanced Energy Materials, 2019, 9, 1902509.	10.2	65
54	Engineering a Cu ₂ O/NiO/Cu ₂ MoS ₄ hybrid photocathode for H ₂ generation in water. Nanoscale, 2014, 6, 6506-6510.	2.8	62

#	Article	IF	CITATIONS
55	Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells. Scientific Reports, 2017, 7, 1350.	1.6	60
56	Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution. Journal of Materials Chemistry A, 2018, 6, 1540-1550.	5.2	60
57	Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell. Organic Electronics, 2012, 13, 870-874.	1.4	58
58	Core–Shell Hematite Nanorods: A Simple Method To Improve the Charge Transfer in the Photoanode for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2015, 7, 6852-6859.	4.0	57
59	Photovoltaic effect in earth abundant solution processed Cu2MnSnS4 and Cu2MnSn(S,Se)4 thin films. Solar Energy Materials and Solar Cells, 2016, 157, 867-873.	3.0	57
60	Assembling graphitic-carbon-nitride with cobalt-oxide-phosphate to construct an efficient hybrid photocatalyst for water splitting application. Catalysis Science and Technology, 2013, 3, 1694.	2.1	56
61	8.6% Efficiency CZTSSe solar cell with atomic layer deposited Zn-Sn-O buffer layer. Solar Energy Materials and Solar Cells, 2016, 157, 101-107.	3.0	56
62	Semiconducting Carbon Nanotubes for Improved Efficiency and Thermal Stability of Polymer–Fullerene Solar Cells. Advanced Functional Materials, 2016, 26, 51-65.	7.8	54
63	Emerging inorganic solar cell efficiency tables (Version 1). JPhys Energy, 2019, 1, 032001.	2.3	54
64	A novel hollowed CoO-in-CoSnO ₃ nanostructure with enhanced lithium storage capabilities. Nanoscale, 2014, 6, 13824-13830.	2.8	52
65	Immobilization of dye pollutants on iron hydroxide coated substrates: kinetics, efficiency and the adsorption mechanism. Journal of Materials Chemistry A, 2016, 4, 13280-13288.	5.2	51
66	Elucidation of the opto-electronic and photoelectrochemical properties of FeVO ₄ photoanodes for solar water oxidation. Journal of Materials Chemistry A, 2018, 6, 548-555.	5.2	50
67	Nanoparticle-Induced Grain Growth of Carbon-Free Solution-Processed CuIn(S,Se) ₂ Solar Cell with 6% Efficiency. ACS Applied Materials & Interfaces, 2013, 5, 1533-1537.	4.0	48
68	Controllable Solutionâ€Phase Epitaxial Growth of Q1D Sb ₂ (S,Se) ₃ /CdS Heterojunction Solar Cell with 9.2% Efficiency. Advanced Materials, 2021, 33, e2104346.	11.1	47
69	Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes. ACS Applied Materials & Interfaces, 2017, 9, 41265-41272.	4.0	45
70	Aligned Tin Oxide Nanonets for High-Performance Transistors. Journal of Physical Chemistry C, 2010, 114, 1331-1336.	1.5	44
71	Recent progress in iron oxide based photoanodes for solar water splitting. Journal Physics D: Applied Physics, 2018, 51, 473002.	1.3	44
72	Revealing the Role of Potassium Treatment in CZTSSe Thin Film Solar Cells. Chemistry of Materials, 2017, 29, 4273-4281.	3.2	43

#	Article	IF	CITATIONS
73	Recent Progress in Solutionâ€Processed Copperâ€Chalcogenide Thinâ€Film Solar Cells. Energy Technology, 2018, 6, 46-59.	1.8	43
74	Determination of Raman Phonon Strain Shift Coefficient of Strained Silicon and Strained SiGe. Japanese Journal of Applied Physics, 2005, 44, 7922-7924.	0.8	42
75	Spray Pyrolysis of CuIn(S,Se) ₂ Solar Cells with 5.9% Efficiency: A Method to Prevent Mo Oxidation in Ambient Atmosphere. ACS Applied Materials & Interfaces, 2014, 6, 6638-6643.	4.0	42
76	Sputter grown sub-micrometer thick Cu2ZnSnS4 thin film for photovoltaic device application. Materials Letters, 2015, 160, 45-50.	1.3	42
77	Improving Carrier-Transport Properties of CZTS by Mg Incorporation with Spray Pyrolysis. ACS Applied Materials & amp; Interfaces, 2019, 11, 25824-25832.	4.0	42
78	Functionally graded tricalcium phosphate/fluoroapatite composites. Materials Science and Engineering C, 2002, 20, 111-115.	3.8	40
79	Improving the interfacial properties of CZTS photocathodes by Ag substitution. Journal of Materials Chemistry A, 2020, 8, 8862-8867.	5.2	40
80	Emerging inorganic solar cell efficiency tables (version 2). JPhys Energy, 2021, 3, 032003.	2.3	40
81	Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 287-292.	4.0	39
82	Enhanced Carrier Transport and Bandgap Reduction in Sulfur-Modified BiVO ₄ Photoanodes. Chemistry of Materials, 2018, 30, 8630-8638.	3.2	39
83	Improved Charge Separation in WO3/CuWO4 Composite Photoanodes for Photoelectrochemical Water Oxidation. Materials, 2016, 9, 348.	1.3	36
84	An update on shellfish allergy. Current Opinion in Allergy and Clinical Immunology, 2019, 19, 236-242.	1.1	34
85	A 4.92% efficiency Cu ₂ ZnSnS ₄ solar cell from nanoparticle ink and molecular solution. RSC Advances, 2016, 6, 54049-54053.	1.7	33
86	Understanding charge transport in non-doped pristine and surface passivated hematite (Fe ₂ O ₃) nanorods under front and backside illumination in the context of light induced water splitting. Physical Chemistry Chemical Physics, 2016, 18, 30370-30378.	1.3	32
87	Antimony Doping in Solutionâ€processed Cu ₂ ZnSn(S,Se) ₄ Solar Cells. ChemSusChem, 2015, 8, 3504-3511.	3.6	31
88	Understanding the role of nanostructuring in photoelectrode performance for light-driven water splitting. Journal of Electroanalytical Chemistry, 2018, 819, 447-458.	1.9	31
89	Understanding the Roles of NiO _{<i>x</i>} in Enhancing the Photoelectrochemical Performance of BiVO ₄ Photoanodes for Solar Water Splitting. ChemSusChem, 2019, 12, 2022-2028.	3.6	31
90	Doping and Switchable Photovoltaic Effect in Leadâ€Free Perovskites Enabled by Metal Cation Transmutation. Advanced Materials, 2018, 30, e1802080.	11.1	30

#	Article	IF	CITATIONS
91	Semitransparent Perovskite Solar Cells with > 13% Efficiency and 27% Transperancy Using Plasmonic Au Nanorods. ACS Applied Materials & Interfaces, 2022, 14, 11339-11349.	4.0	29
92	Influence of void-free perovskite capping layer on the charge recombination process in high performance CH ₃ NH ₃ PbI ₃ perovskite solar cells. Nanoscale, 2016, 8, 4181-4193.	2.8	28
93	Improving the charge separation and collection at the buffer/absorber interface by double-layered Mn-substituted CZTS. Solar Energy Materials and Solar Cells, 2018, 185, 351-358.	3.0	27
94	Modelling and loss analysis of meso-structured perovskite solar cells. Journal of Applied Physics, 2017, 122, .	1.1	24
95	Direct Band Gap Mixed-Valence Organic–inorganic Gold Perovskite as Visible Light Absorbers. Chemistry of Materials, 2020, 32, 6318-6325.	3.2	24
96	The role of tin oxide surface defects in determining nanonet FET response to humidity and photoexcitation. Journal of Materials Chemistry C, 2014, 2, 940-945.	2.7	23
97	Environmentally friendly solution route to kesterite Cu ₂ ZnSn(S,Se) ₄ thin films for solar cell applications. RSC Advances, 2014, 4, 26888-26894.	1.7	23
98	Highly Active MnO Catalysts Integrated onto Fe ₂ O ₃ Nanorods for Efficient Water Splitting. Advanced Materials Interfaces, 2016, 3, 1600176.	1.9	22
99	Effect of Cd on cation redistribution and order-disorder transition in Cu ₂ (Zn,Cd)SnS ₄ . Journal of Materials Chemistry A, 2019, 7, 26927-26933.	5.2	22
100	Wire-shaped perovskite solar cell based on TiO ₂ nanotubes. Nanotechnology, 2016, 27, 20LT01.	1.3	21
101	Synergistic Effect of Porosity and Gradient Doping in Efficient Solar Water Oxidation of Catalyst-Free Gradient Mo:BiVO ₄ . ACS Omega, 2018, 3, 2724-2734.	1.6	21
102	Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 23787-23796.	5.2	21
103	Effect of TaN intermediate layer on the back contact reaction of sputter-deposited Cu poor Cu2ZnSnS4 and Mo. Applied Surface Science, 2019, 471, 277-288.	3.1	21
104	Highly efficient and thermally stable Sb ₂ Se ₃ solar cells based on a hexagonal CdS buffer layer by environmentally friendly interface optimization. Journal of Materials Chemistry C, 2020, 8, 17194-17201.	2.7	21
105	Synthesis of SnS2 single crystals and its Li-storage performance with LiMn2O4 cathode. Applied Materials Today, 2016, 5, 68-72.	2.3	19
106	Revealing Cation-Exchange-Induced Phase Transformations in Multielemental Chalcogenide Nanoparticles. Chemistry of Materials, 2017, 29, 9192-9199.	3.2	19
107	Effect of Zn(O,S) buffer layer thickness on charge carrier relaxation dynamics of CuInSe2 solar cell. Solar Energy, 2015, 115, 396-404.	2.9	18
108	Silver and Potassium Incorporation in Double-Layer Solution-Processed Cu ₂ ZnSnS ₄ Solar Cell. ACS Applied Energy Materials, 2020, 3, 10402-10407.	2.5	18

#	Article	IF	CITATIONS
109	Investigation of photophysical, morphological and photovoltaic behavior of poly(p-phenylene) Tj ETQq1 1 0.78	4314 rgBT 0.8	/Overlock 10
110	Solutionâ€Processed Pure Sulfide Cu ₂ (Zn _{0.6} Cd _{0.4})SnS ₄ Solar Cells with Efficiency 10.8% Using Ultrathin CuO Intermediate Layer. Solar Rrl, 2020, 4, 2000293.	3.1	16
111	Surface Modification of Hematite Photoanodes with CeO _{<i>x</i>} Cocatalyst for Improved Photoelectrochemical Water Oxidation Kinetics. ChemSusChem, 2020, 13, 5489-5496.	3.6	16
112	Strain relaxation mechanism in a reverse compositionally graded SiGe heterostructure. Applied Physics Letters, 2007, 90, 061913.	1.5	15
113	Chemical welding of binary nanoparticles: room temperature sintering of CuSe and In2S3 nanoparticles for solution-processed CulnSxSe1â^'x solar cells. Chemical Communications, 2013, 49, 5351.	2.2	15
114	The synergistic effect of cation mixing in mesoporous Bi _x Fe _{1â^'x} VO ₄ heterojunction photoanodes for solar water splitting. Journal of Materials Chemistry A, 2019, 7, 14816-14824.	5.2	15
115	Characterization of titanium silicide by Raman spectroscopy for submicron IC processing. Microelectronic Engineering, 1998, 43-44, 611-617.	1.1	14
116	A Novel Thin Buffer Concept for Epitaxial Growth of Relaxed SiGe Layers with Low Threading Dislocation Density. Electrochemical and Solid-State Letters, 2005, 8, G60.	2.2	13
117	Electrodeposition of single phase CuInSe2 for solar energy harvesting: Role of different acidic additives. Journal of Alloys and Compounds, 2014, 591, 127-131.	2.8	13
118	A Precursor Stacking Strategy to Boost Open-Circuit Voltage of Cu ₂ ZnSnS ₄ Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 856-863.	1.5	13
119	Monitoring of TiSi/sub 2/ formation on narrow polycrystalline silicon lines using Raman spectroscopy. IEEE Electron Device Letters, 1998, 19, 171-173.	2.2	12
120	Catalytic effect of Bi 5+ in enhanced solar water splitting of tetragonal BiV 0.8 Mo 0.2 O 4. Applied Catalysis A: General, 2016, 526, 21-27.	2.2	12
121	Solutionâ€Processed Semitransparent CZTS Thinâ€Film Solar Cells via Cation Substitution and Rapid Thermal Annealing. Solar Rrl, 2021, 5, 2100131.	3.1	12
122	Physical and Electrical Properties of Single Zn[sub 2]SnO[sub 4] Nanowires. Electrochemical and Solid-State Letters, 2011, 14, K5.	2.2	11
123	Optical and Electrical Properties of Wurtzite Copper Indium Sulfide Nanoflakes. Materials Express, 2012, 2, 344-350.	0.2	11
124	Dual Role of Cuâ€Chalcogenide as Holeâ€Transporting Layer and Interface Passivator for p–i–n Architecture Perovskite Solar Cell. Advanced Functional Materials, 2021, 31, 2103807.	7.8	11
125	Multimodal Approach towards Large Area Fully Semitransparent Perovskite Solar Module. Advanced Energy Materials, 2021, 11, 2102276.	10.2	11
126	Thermal Stability of a Reverse-Graded SiGe Buffer Layer for Growth of Relaxed SiGe Epitaxy. Electrochemical and Solid-State Letters, 2006, 9, G114.	2.2	10

#	Article	IF	CITATIONS
127	MODULATING CH ₃ NH ₃ PbI ₃ PEROVSKITE CRYSTALLIZATION BEHAVIOR THROUGH PRECURSOR CONCENTRATION. Nano, 2014, 09, 1440003.	0.5	10
128	Solution-processed pure Cu2ZnSnS4/CdS thin film solar cell with 7.5% efficiency. Optical Materials, 2021, 114, 110947.	1.7	10
129	Low-dislocation-density strain relaxation of SiGe on a SiGeâ^•SiGeC buffer layer. Applied Physics Letters, 2006, 88, 041915.	1.5	9
130	Cation substitution of CZTS solar cell with > 10% efficiency. , 2016, , .		9
131	Preparation of high efficiency Cu 2 ZnSn(S,Se) 4 solar cells from novel non-toxic hybrid ink. Journal of Power Sources, 2016, 335, 84-90.	4.0	9
132	High Throughput Discovery of Effective Metal Doping in FeVO ₄ for Photoelectrochemical Water Splitting. Solar Rrl, 2020, 4, 2000437.	3.1	9
133	An Intrinsically Microâ€∤Nanostructured Pollen Substrate with Tunable Optical Properties for Optoelectronic Applications. Advanced Materials, 2021, 33, e2100566.	11.1	9
134	Observation of orientation-dependent photovoltaic behaviors in aligned organic nanowires. Applied Physics Letters, 2013, 103, .	1.5	8
135	Morphology and stoichiometry control of hierarchical CuInSe2/SnO2 nanostructures by directed electrochemical assembly for solar energy harvesting. Electrochemistry Communications, 2012, 15, 18-21.	2.3	7
136	Photoactive Nanocrystals by Lowâ€Temperature Welding of Copper Sulfide Nanoparticles and Indium Sulfide Nanosheets. ChemSusChem, 2014, 7, 3290-3294.	3.6	7
137	Promotional effects of cetyltrimethylammonium bromide surface modification on a hematite photoanode for photoelectrochemical water splitting. RSC Advances, 2015, 5, 100142-100146.	1.7	7
138	An experimentally supported model for the origin of charge transport barrier in Zn(O,S)/CIGSSe solar cells. Applied Physics Letters, 2016, 108, .	1.5	7
139	Molybdenum incorporated Cu1.69ZnSnS4 kesterite photovoltaic devices with bilayer microstructure and tunable optical-electronic properties. Solar Energy, 2019, 194, 777-787.	2.9	7
140	Comparing the Effect of Mn Substitution in Sulfide and Sulfoselenideâ€Based Kesterite Solar Cells. Solar Rrl, 2020, 4, 1900521.	3.1	7
141	Nanostructured Iron Vanadate Photoanodes with Enhanced Visible Absorption and Charge Separation. ACS Applied Energy Materials, 2022, 5, 3409-3416.	2.5	7
142	Thermal stability of strained Si/Si1â^'xGex heterostructures for advanced microelectronics devices. Thin Solid Films, 2004, 462-463, 76-79.	0.8	6
143	Solid-Ionic Memory in a van der Waals Heterostructure. ACS Nano, 2022, 16, 221-231.	7.3	6
144	The Effect of Cu CMP Pad Clean on Defectivity and Reliability. IEEE Transactions on Semiconductor Manufacturing, 2013, 26, 344-349.	1.4	5

#	Article	IF	CITATIONS
145	Photophysical investigation of charge recombination in CdS/ZnO layers of CuIn(S,Se) ₂ solar cell. RSC Advances, 2014, 4, 58372-58376.	1.7	5
146	Spray pyrolysis synthesized Cu(In,Al)(S,Se) ₂ thin films solar cells. Materials Research Express, 2018, 5, 035506.	0.8	5
147	Comprehensive physicochemical and photovoltaic analysis of different Zn substitutes (Mn, Mg, Fe, Ni,) Tj ETQq1 1	0.78431 5.2	4 rgBT /Ove
148	Void formation in titanium desilicide/p+ silicon interface: impact on junction leakage and silicide sheet resistance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 289-295.	1.7	3
149	Cu-S Nanocabbage Films with Tunable Optical Bandgap and Substantially Improved Stability by Pulse Electrodeposition. Journal of the Electrochemical Society, 2011, 158, E60.	1.3	3
150	Thermal Studies on Stress-Induced Void-Like Defects in Epitaxial-CoSi2 Formation. Materials Research Society Symposia Proceedings, 1999, 564, 109.	0.1	2
151	Threading dislocation reduction by SiGeC domains in SiGeâ^•SiGeC heterostructure: Role of pure edge dislocations. Applied Physics Letters, 2006, 89, 231906.	1.5	2
152	Improvement of VOC in Cu2ZnSnS4 monograin layer solar cells with tin oxide inter-layer. , 2015, , .		2
153	Multi Band Gap Cu(In,Ga)(S,Se) ₂ Thin Films Deposited by Spray Pyrolysis for High Performance Solar Cell Devices. Materials Science Forum, 2016, 864, 143-148.	0.3	2
154	Investigation of selenization and various CBD CdS deposition conditions to fabricate high performing spray pyrolysis synthesized Cu(In,Ga)(S,Se)2 solar cells. Journal of Renewable and Sustainable Energy, 2017, 9, 013504.	0.8	2
155	Women Scientists at the Forefront of Energy Research: A Virtual Issue, Part 2. ACS Energy Letters, 2020, 5, 623-633.	8.8	2
156	Research presented at Symposium P of the 10 th International Conference of Materials and Advanced Technology (ICMAT 2019). Journal of Materials Chemistry A, 2020, 8, 843-844.	5.2	1
157	Dual Role of Cuâ€Chalcogenide as Holeâ€Transporting Layer and Interface Passivator for p–i–n Architecture Perovskite Solar Cell (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170282.	7.8	1
158	Integration of SALICIDE process for deep-submicron CMOS technology: effect of nitrogen/argon-amorphized implant on SALICIDE formation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 51, 274-279.	1.7	0
159	Enhanced Boron Activation in Strained-Si/Si1-xGex Substrate Using Laser Annealing. ECS Transactions, 2006, 1, 1-6.	0.3	0
160	Fabrication and characterization of Cu <inf>2</inf> ZnSn(S, Se) <inf>4</inf> solar cells by spray-deposited precursor stacks. , 2014, , .		0
161	Fabrication and characterization of Cu2ZnSn(S, Se)4 with aluminum doping by spray pyrolysis followed by selenization. , 2015, , .		0
162	Revealing the Role of Mn Incorporation in CU2ZnSn(S, Se)4 Photovoltaic Absorber Layer. , 2017, , .		0

#	Article	IF	CITATIONS
163	Nickel Oxide Thin Films by Radio Frequency Sputter for Inverted Perovskite Solar Cells. , 2017, , .		Ο
164	Modulation spectroscopy characterization of Cu based chalcopyrites and kesterites. , 2018, , .		0
165	Solutionâ€Processed Pure Sulfide Cu ₂ (Zn _{0.6} Cd _{0.4})SnS ₄ Solar Cells with Efficiency 10.8% Using Ultrathin CuO Intermediate Layer. Solar Rrl, 2020, 4, 2070096.	3.1	0
166	High Throughput Discovery of Effective Metal Doping in FeVO ₄ for Photoelectrochemical Water Splitting. Solar Rrl, 2020, 4, 2070096.	3.1	0
167	Material Design for Artificial Photosynthesis using Photoelectrodes for Hydrogen Production. , 2019, , 231-258.		0
168	Holistic Approach Towards Fully Semi-transparent 21 cm2 Perovskite Solar Module with 9.5% Efficiency. , 0, , .		0