Madeline R Luth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1944865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology and Biochemistry, 2015, 81, 228-235.	8.8	151
2	Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science, 2018, 362, .	12.6	99
3	Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Applied Soil Ecology, 2014, 84, 192-199.	4.3	81
4	Using <i>in Vitro</i> Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2018, 4, 301-314.	3.8	60
5	Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathogens, 2019, 15, e1007722.	4.7	58
6	Target Validation and Identification of Novel Boronate Inhibitors of the <i>Plasmodium falciparum</i> Proteasome. Journal of Medicinal Chemistry, 2018, 61, 10053-10066.	6.4	54
7	CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Neglected Tropical Diseases, 2017, 11, e0006104.	3.0	45
8	Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chemical Biology, 2022, 29, 191-201.e8.	5.2	39
9	In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Science Translational Medicine, 2019, 11, .	12.4	30
10	Evolution of resistance in vitro reveals mechanisms of artemisinin activity in <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26881-26891.	7.1	30
11	Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nature Communications, 2020, 11, 1780.	12.8	27
12	Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infectious Diseases, 2020, 6, 613-628.	3.8	26
13	Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science, 2022, 376, 1074-1079.	12.6	25
14	PfMFR3: A Multidrug-Resistant Modulator in <i>Plasmodium falciparum</i> . ACS Infectious Diseases, 2021, 7, 811-825.	3.8	16
15	Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Communications Biology, 2022, 5, 128.	4.4	8
16	The Novel bis-1,2,4-Triazine MIPS-0004373 Demonstrates Rapid and Potent Activity against All Blood Stages of the Malaria Parasite. Antimicrobial Agents and Chemotherapy, 2021, 65, e0031121.	3.2	4
17	SnapShot: Antimalarial Drugs. Cell, 2020, 183, 554-554.e1.	28.9	2