Carmen Gonzalez Henriquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1944575/publications.pdf

Version: 2024-02-01

933447 526287 30 775 10 27 citations h-index g-index papers 30 30 30 1046 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Innovation in Additive Manufacturing Using Polymers: A Survey on the Technological and Material Developments. Polymers, 2022, 14, 1351.	4.5	16
2	Thermoresponsive microwrinkled hydrogel surfaces with modulated chemical composition. Polymer, 2021, 231, 124109.	3.8	5
3	Wrinkling on Stimuli-Responsive Functional Polymer Surfaces as a Promising Strategy for the Preparation of Effective Antibacterial/Antibiofouling Surfaces. Polymers, 2021, 13, 4262.	4.5	6
4	New cardo silylated poly(azomethine)s containing 9,9′â€diphenylfluorene units as materials with BrÃ,nsted acidâ€dependent fluorescence. Polymer International, 2020, 69, 239-247.	3.1	5
5	Innovative procedure for precise deposition of wrinkled hydrogel films using direct inkjet printing. Materials and Design, 2020, 194, 108959.	7.0	8
6	Biocompatible fluorinated wrinkled hydrogel films with antimicrobial activity. Materials Science and Engineering C, 2020, 114, 111031.	7.3	9
7	Formation of responsive hierarchical wrinkled patterns on hydrogel films via multi-step methodology. Polymer, 2019, 179, 121662.	3.8	8
8	Microwrinkled pH-sensitive hydrogel films and their role on the cell adhesion/proliferation. Materials Science and Engineering C, 2019, 103, 109872.	7.3	9
9	Flexible oligomeric siliconâ€containing poly(etherâ€azomethine)s obtained from epoxide derivatives. Synthesis and characterization. Journal of Applied Polymer Science, 2019, 136, 48055.	2.6	4
10	Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science, 2019, 94, 57-116.	24.7	364
11	Antimicrobial Polymers for Additive Manufacturing. International Journal of Molecular Sciences, 2019, 20, 1210.	4.1	53
12	Micrometric Wrinkled Patterns Spontaneously Formed on Hydrogel Thin Films via Argon Plasma Exposure. Molecules, 2019, 24, 751.	3.8	9
13	Design and fabrication of biocompatible wrinkled hydrogel films with selective antibiofouling properties. Materials Science and Engineering C, 2019, 97, 803-812.	7. 3	19
14	Silylated oligomeric poly(ether-azomethine)s from monomers containing biphenyl moieties: synthesis and characterization. RSC Advances, 2018, 8, 1296-1312.	3.6	21
15	Smart pH-Responsive Antimicrobial Hydrogel Scaffolds Prepared by Additive Manufacturing. ACS Applied Bio Materials, 2018, 1, 1337-1347.	4.6	44
16	Micro-wrinkled hydrogel patterned surfaces using pH-sensitive monomers. Applied Surface Science, 2018, 457, 902-913.	6.1	18
17	Structure correlation of silylated dicarboxylic acid monomer and its respective oligomeric polyamide-imide using experimental and theoretical vibrational spectra. Spectroscopy Letters, 2017, 50, 30-38.	1.0	4
18	A simple method to generate spontaneous chemisorption of metallic particles mediated by carboxylate groups from silylated oligomeric poly(amideâ€imide)s. Polymer International, 2017, 66, 851-860.	3.1	0

#	Article	IF	CITATIONS
19	Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers, 2017, 9, 551.	4.5	36
20	Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. Materials, 2017, 10, 232.	2.9	62
21	Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques. Biosensors, 2017, 7, 34.	4.7	8
22	Synthesis and characterization of aromatic poly(ether-imide)s based on bis(4-(3,4-dicarboxyphenoxy)phenyl)-R,R-silane anhydrides (R = Me, Ph) $\hat{a} \in \text{``spontaneous formation of surface micropores from THF solutions. RSC Advances, 2016, 6, 49335-49347.}$	3.6	7
23	Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. Polymer, 2016, 101, 24-33.	3.8	17
24	Synthesis and thermal, optical and morphological characterization of oligomeric polyamides based on thiophene and alkyl/phenylâ \in silane moieties. Study of the electrospun deposition process. Journal of Applied Polymer Science, 2016, 133, .	2.6	4
25	Poly(ether-imide-amide)s obtained from bis[4-(4-aminophenoxy)phenyl] diphenylsilane and dicarboxylic acids derivatives of bis(3,4-dicarboxyphenyl)dimethylsilane anhydride combined with l-aminoacids. Polymer Bulletin, 2016, 73, 1103-1117.	3.3	6
26	Silarylene-containing oligo(ether-amide)s based on bis(4-(4-amino phenoxy)phenyl)dimethylsilane. Effect of the dicarboxylic acid structure on some properties. RSC Advances, 2015, 5, 28515-28526.	3.6	9
27	Thin and ordered hydrogel films deposited through electrospinning technique; a simple and efficient support for organic bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2126-2137.	2.6	7
28	Theoretical and Experimental Vibrational Spectroscopic Investigation of Two R1R2-Diphenylsilyl-Containing Monomers and Their Optically Active Derivative Polymer. Journal of Physical Chemistry A, 2014, 118, 1175-1184.	2.5	8
29	Light sensitive antiferroelectric achiral copolymers. Journal of Materials Chemistry, 2012, 22, 3340.	6.7	4
30	Thiophene- and silarylene-containing polyesters. Resonance effect on conductivity after polarization in an external electric field. Polymer International, 2012, 61, 810-817.	3.1	5