Baomin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1944555/publications.pdf Version: 2024-02-01

RAOMIN WANC

#	Article	IF	CITATIONS
1	Synthesis, characterization and reactivity of thiolate-bridged cobalt-iron and ruthenium-iron complexes. Chinese Chemical Letters, 2022, 33, 217-220.	9.0	3
2	Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Organic and Biomolecular Chemistry, 2022, 20, 2370-2386.	2.8	24
3	Synthesis, Characterization, and Catalytic Reactivity of Dithiolate-Bridged Diiron Complexes Supported by Bulky Cyclopentadienyl Ligands. Organometallics, 2022, 41, 1334-1343.	2.3	2
4	Synthesis and Structure of Thiolateâ€Bridged Diiron and Dicobalt Complexes Supported by Modified <i>β</i> â€Diketiminate Ligands. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	2
5	Reversible binding of dinitrogen on a thiolate-bridged cobalt–ruthenium complex supported by a flexible bidentate phosphine ligand. Dalton Transactions, 2022, 51, 9978-9982.	3.3	1
6	A thiolate-bridged ruthenium–molybdenum complex featuring terminal nitrido and bridging amido ligands derived from the N–H and N–N bond cleavage of hydrazine. Dalton Transactions, 2022, 51, 10866-10870.	3.3	1
7	4-Dimethylaminopyridine-catalyzed [3Â+Â3] spiroannulation reactions of isatin-derived Morita-Baylis-Hillman carbonates with indoline-2-thiones. Tetrahedron Letters, 2022, 102, 153950.	1.4	6
8	Catalytic asymmetric construction of dispirotriheterocyclic structures through [3+2] cycloadditions of 4-amino pyrazolone-based azomethine ylides. New Journal of Chemistry, 2022, 46, 14155-14158.	2.8	1
9	Asymmetric sequential annulation/aldol process of 4-isothiocyanato pyrazolones and allenones: access to novel spiro[pyrrole–pyrazolones] and spiro[thiopyranopyrrole–pyrazolones]. Chemical Communications, 2021, 57, 363-366.	4.1	22
10	Advances of α-activated cyclic isothiocyanate for the enantioselective construction of spirocycles. Organic and Biomolecular Chemistry, 2021, 19, 4610-4621.	2.8	15
11	Catalytic asymmetric construction of C-4 alkenyl substituted pyrazolone derivatives bearing multiple stereoelements. Chemical Communications, 2021, 57, 6550-6553.	4.1	24
12	Synthesis, Structure, and Oxidative Reactivity of a Class of Thiolateâ€Bridged Dichromium Complexes Featuring Antiferromagnetic Coupling Interactions. European Journal of Inorganic Chemistry, 2021, 2021, 923-928.	2.0	2
13	Diastereoselective synthesis of indolenine-based spiro[pyrazolone-4,2′-pyrrolidine] scaffolds via 1,3-dipolar cycloaddition of 4-aminopyrazolones, aldehydes, and indolenines. Organic and Biomolecular Chemistry, 2021, 19, 6964-6968.	2.8	4
14	Enantioselective [3 + 2] annulation of 4-isothiocyanato pyrazolones and alkynyl ketones under organocatalysis. Organic and Biomolecular Chemistry, 2021, 19, 1145-1154.	2.8	13
15	Construction of a spiro[pyrazolone-4,2′-pyridoindole] scaffold <i>via</i> a [3 + 3] cycloaddition of 2-indolylmethanol with a 4-aminopyrazolone-derived azomethine ylide. Organic and Biomolecular Chemistry, 2021, 19, 8530-8538.	2.8	5
16	Identification of a tartrate-based modular guanidine towards highly asymmetric Michael addition of 3-aminooxindoles to nitroolefins. Tetrahedron Letters, 2021, 64, 152741.	1.4	2
17	Chiral phosphoric acid-catalyzed regioselective synthesis of spiro aminals with quaternary stereocenters. Tetrahedron Letters, 2021, 65, 152793.	1.4	5
18	Structure and Methylene Transfer Reactivity of Thiolate-Bridged Dichromium Methylene Complexes Derived from Dihalomethane via Cleavage of Two Carbon–Halogen Bonds. Organometallics, 2021, 40, 1434-1442.	2.3	4

#	Article	IF	CITATIONS
19	Palladium-Catalyzed Asymmetric Trifluoromethylated Allylic Alkylation of Pyrazolones Enabled by α-(Trifluoromethyl)alkenyl Acetates. Organic Letters, 2021, 23, 5804-5808.	4.6	11
20	Squaramide-catalyzed asymmetric Michael/cyclization of 4-isothiocyanato pyrazolones and α,β-unsaturated ketones. Tetrahedron Letters, 2021, 78, 153259.	1.4	4
21	Acid-catalyzed allenylation of pyrazolones with propargyl alcohols. Organic and Biomolecular Chemistry, 2021, 19, 4992-5001.	2.8	0
22	Generation of a Sulfinamide Species from Facile N–O Bond Cleavage of Nitrosobenzene by a Thiolate-Bridged Diiron Complex. Journal of the American Chemical Society, 2021, 143, 17374-17387.	13.7	6
23	Stereoselective construction of novel biaryl bridged seven-membered ring scaffolds via intramolecular [3Â+Â2] cycloaddition reactions. Tetrahedron Letters, 2021, 87, 153510.	1.4	2
24	C-4 benzofuranylation of pyrazolones by a metal-free catalyzed indirect heteroarylation strategy. Organic and Biomolecular Chemistry, 2021, 19, 10215-10222.	2.8	0
25	Formation of thiolate-bridged diiron complexes featuring anionic isocyanide originating from the activation of counterions in the outer sphere. Dalton Transactions, 2021, , .	3.3	2
26	Construction of a low-valent thiolate-bridged dicobalt platform and its reactivity toward hydrogen activation and evolution. Chinese Chemical Letters, 2021, , .	9.0	1
27	Catalytic disproportionation of hydrazine by thiolate-bridged diiron complexes. Inorganic Chemistry Communication, 2020, 112, 107735.	3.9	4
28	Catalyst-free construction of spiro [benzoquinolizidine-chromanones] <i>via</i> a tandem condensation/1,5-hydride transfer/cyclization process. Organic and Biomolecular Chemistry, 2020, 18, 8839-8843.	2.8	7
29	<i>tert</i> -Amino Effect-Promoted Rearrangement of Aryl Isothiocyanate: A Versatile Approach to Benzimidazothiazepines and Benzimidazothioethers. Journal of Organic Chemistry, 2020, 85, 12635-12643.	3.2	10
30	Facile C–N coupling of coordinated ammonia and labile carbonyl or acetonitrile promoted by a thiolate-bridged dicobalt reaction scaffold. Dalton Transactions, 2020, 49, 11260-11267.	3.3	3
31	2-Activated 1,3-enynes in enantioselective synthesis. Organic and Biomolecular Chemistry, 2020, 18, 7977-7986.	2.8	36
32	Synthesis, characterization and reactivity toward small molecules of a diiron tetrahydrido bridged complex. Inorganic Chemistry Communication, 2020, 122, 108286.	3.9	1
33	Thiolate-Bridged Dicobalt Complexes Bearing Hydrazine, Hydrazido, and Diazenido Ligands: Synthesis, Structural Characterization, and Interconversion. Inorganic Chemistry, 2020, 59, 8203-8212.	4.0	6
34	Synthesis, Isomerization and Electrocatalytic Properties of Thiolate-Bridged Dicobalt Hydride Complexes with Different Substituents. European Journal of Inorganic Chemistry, 2020, 2020, 2757-2764.	2.0	4
35	A bioinspired thiolate-bridged dinickel complex with a pendant amine: synthesis, structure and electrocatalytic properties. Dalton Transactions, 2020, 49, 2151-2158.	3.3	12
36	Enantioselective construction of dispirotriheterocycles featuring a 4-aminopyrazolone motif through a cascade Michael/cyclization process. Chemical Communications, 2020, 56, 10690-10693.	4.1	27

#	Article	IF	CITATIONS
37	CO ₂ fixation and transformation on a thiolate-bridged dicobalt scaffold under oxidising conditions. Inorganic Chemistry Frontiers, 2019, 6, 2185-2193.	6.0	8
38	Chiral Phosphoric Acid-Catalyzed Synthesis of Fluorinated 5,6-Dihydroindolo[1,2- <i>c</i>]quinazolines with Quaternary Stereocenters. Journal of Organic Chemistry, 2019, 84, 8300-8308.	3.2	14
39	Synthesis, characterization and structure of thiolate-bridged diruthenium and iron-ruthenium complexes with isocyanide ligands. Inorganic Chemistry Communication, 2019, 106, 27-33.	3.9	4
40	Biomimetic catalytic oxidative coupling of thiols using thiolate-bridged dinuclear metal complexes containing iron in water under mild conditions. Catalysis Science and Technology, 2019, 9, 6492-6502.	4.1	18
41	Construction of indolenine-substituted spiro[pyrrolidine-2,3′-oxindoles] from 2-alkenylindolenines and isatin-derived azomethine ylides. Tetrahedron, 2018, 74, 2369-2375.	1.9	6
42	Stereoselective Sequential [4+2]/[2+2] Cycloadditions Involving 2-Alkenylindolenines: An Approach to Densely Functionalized Benzo[<i>b</i>]indolizidines. Journal of Organic Chemistry, 2018, 83, 5044-5051.	3.2	4
43	C6′ steric bulk of cinchona alkaloid enables an enantioselective Michael addition/annulation sequence toward pyranopyrazoles. Chemical Communications, 2018, 54, 2028-2031.	4.1	27
44	Porous Carbon Nanosheet‣upported Chiral Squaramide for Highly Enantioselective Friedel–Crafts Reaction. ChemCatChem, 2018, 10, 1248-1252.	3.7	15
45	Organocatalytic [3 + 2] cycloaddition of oxindole-based azomethine ylides with 3-nitrochromenes: a facile approach to enantioenriched polycyclic spirooxindole-chromane adducts. Organic and Biomolecular Chemistry, 2018, 16, 807-815.	2.8	23
46	Methylene insertion into an Fe ₂ S ₂ cluster: formation of a thiolate-bridged diiron complex containing an Fe–CH ₂ –S moiety. Chemical Communications, 2018, 54, 13119-13122.	4.1	14
47	Reactivity toward Unsaturated Small Molecules of Thiolate-Bridged Diiron Hydride Complexes. Inorganic Chemistry, 2018, 57, 15198-15204.	4.0	15
48	Engaging 2-methyl indolenines in a tandem condensation/1,5-hydride transfer/cyclization process: construction of a novel indolenine–tetrahydroquinoline assembly. Organic Chemistry Frontiers, 2018, 5, 3008-3012.	4.5	27
49	Asymmetric Addition of Pyrazolones to Allenamides Catalyzed by a Chiral Phosphoric Acid. European Journal of Organic Chemistry, 2018, 2018, 6469-6473.	2.4	19
50	Pyrazolone: a powerful synthon for asymmetric diverse derivatizations. Chemical Communications, 2018, 54, 11515-11529.	4.1	128
51	Sulfur-Centered Reactivity of Oxidized Iron-Thiolate Complex toward Unsaturated Hydrocarbon Addition. Organometallics, 2018, 37, 3165-3173.	2.3	5
52	Asymmetric Construction of a Multi-Pharmacophore-Containing Dispirotriheterocyclic Scaffold and Identification of a Human Carboxylesterase 1 Inhibitor. Organic Letters, 2018, 20, 3394-3398.	4.6	77
53	Highly β(<i>Z</i>)-Selective Hydrosilylation of Terminal Alkynes Catalyzed by Thiolate-Bridged Dirhodium Complexes. Organic Letters, 2018, 20, 5357-5361.	4.6	30
54	lodine-mediated cross-dehydrogenative coupling of pyrazolones and alkenes. Organic and Biomolecular Chemistry, 2018, 16, 6275-6283.	2.8	12

#	Article	IF	CITATIONS
55	Expedient Synthesis of 1,4â€Benzodiazepines via a Tandem Condensation/[1,5]â€Hydride Transfer/Cyclization Process. Advanced Synthesis and Catalysis, 2018, 360, 4094-4098.	4.3	24
56	Terminal alkyne insertion into a thiolate-bridged dirhodium hydride complex derived from heterolytic cleavage of H2. Chemical Communications, 2018, 54, 11112-11115.	4.1	8
57	Substrate-controlled divergent synthesis of polycyclic indoloazepines and indolodiazepines via $1,5$ -hydride shift/7-cyclization cascades. Chemical Communications, 2018, 54, 7928-7931.	4.1	49
58	the disulfide ligand: [Cp*Fe(l¼â€"l· ² :l· ² -bdt)(cis-l¼â€"l· ¹ :l· ¹ -S ₂)Fe [Cp*Fe(l¼-S(C ₆ H ₄ S ₂))(cis-l¼â€"l· ¹ 1:l· ¹]and [{Cp*Fe(bdt)} ₂)]. Dalton	Cp <u>*]</u> ·2)	FeĆp*],
59	Transactions, 2017, 46, 3820-3824 Ca€ H Activation of Cp* Ligand Coordinated to Ruthenium Center: Synthesis and Reactivity of a Thiolate-Bridged Diruthenium Complex Featuring Fulvene-like Cp* Ligand. Organometallics, 2017, 36, 1515-1521.	2.3	10
60	Synthesis and characterization of a family of thioether-dithiolate-bridged heteronuclear iron complexes. Dalton Transactions, 2017, 46, 7030-7038.	3.3	8
61	Asymmetric [3+2] cycloaddition of 3-amino oxindole-based azomethine ylides with α,β-ynones: a straightforward approach to spirooxindoles incorporating 2,5-dihydropyrroles and pyrroles. Chemical Communications, 2017, 53, 4714-4717.	4.1	34
62	Asymmetric [3 + 2] Cycloaddition of 3-Amino Oxindole-Based Azomethine Ylides and α,β-Enones with Divergent Diastereocontrol on the Spiro[pyrrolidine-oxindoles]. Organic Letters, 2017, 19, 1862-1865.	4.6	61
63	Assembly of Indolenines, 3-Amino Oxindoles, and Aldehydes into Indolenine-Substituted Spiro[pyrrolidin-2,3′-oxindoles] via 1,3-Dipolar Cycloaddition with Divergent Diastereoselectivities. Journal of Organic Chemistry, 2017, 82, 4317-4327.	3.2	28
64	Synthesis and reactivity of thiolate-bridged multi-iron complexes supported by cyclic (alkyl)(amino)carbene. Dalton Transactions, 2017, 46, 15888-15896.	3.3	17
65	Proton mediated switching of the coordination states of the tethered N-atom in iron complex featuring a pendent amine functionalized Cp* ligand. Inorganic Chemistry Communication, 2017, 86, 133-136.	3.9	1
66	Migratory insertion and hydrogenation of a bridging azide in a thiolate-bridged dicobalt reaction platform. Chemical Communications, 2017, 53, 9854-9857.	4.1	15
67	Catalytic Nâ^'N bond cleavage of hydrazine by thiolate-bridged iron-ruthenium heteronuclear complexes. Inorganic Chemistry Communication, 2017, 83, 66-69.	3.9	10
68	Highly Efficient and Practical Thiocyanation of Imidazopyridines Using an <i>N</i> hlorosuccinimide/NaSCN Combination. European Journal of Organic Chemistry, 2016, 2016, 3373-3379.	2.4	47
69	Asymmetric Hydroxylation of 4‣ubstituted Pyrazolones Catalyzed by Natural <i>Cinchona</i> Alkaloids. Advanced Synthesis and Catalysis, 2016, 358, 3971-3976.	4.3	33
70	Asymmetric fluorination of 4-substituted pyrazolones catalyzed by quinine. Tetrahedron: Asymmetry, 2016, 27, 436-441.	1.8	26
71	A facile and expeditious approach to substituted 1 H -pyrazoles catalyzed by iodine. Tetrahedron Letters, 2016, 57, 2633-2637.	1.4	27
72	1,3â€Dipolar Cycloaddition of Azomethine Ylides Involving 3â€Aminooxindoles: Versatile Construction of Dispiro[pyrrolidineâ€2,3′â€oxindole] Scaffolds. European Journal of Organic Chemistry, 2016, 2016, 5335-5339.	2.4	17

#	Article	IF	CITATIONS
73	Asymmetric chlorination of 4-substituted pyrazolones catalyzed by natural cinchona alkaloid. Chemical Communications, 2016, 52, 11426-11429.	4.1	45
74	A ZnCl ₂ â€Catalyzed Knoevenagel Condensation/1,5â€Hydride Shift/Cyclization Sequence: Synthesis of Novel Spiroisoxazolâ€5â€one Tetrahydroquinolines. ChemistrySelect, 2016, 1, 3713-3717.	1.5	20
75	Structural characterization and proton reduction electrocatalysis of thiolate-bridged bimetallic (CoCo and CoFe) complexes. Dalton Transactions, 2016, 45, 18559-18565.	3.3	26
76	Thiolate-Bridged Nickel–Iron and Nickel–Ruthenium Complexes Relevant to the CO-Inhibited State of [NiFe]-Hydrogenase. Organometallics, 2016, 35, 751-757.	2.3	24
77	Versatile Reactivity of CH3CN-Coordinated Nickel-Iron Heterodimetallic Complexes with Cp* Ligand on Diazadithiolate (N2S2) or Dithiadithiolate (S4) Platforms. European Journal of Inorganic Chemistry, 2015, 2015, 2965-2973.	2.0	28
78	Asymmetric tandem Michael addition/oxidation of pyrazolones with p-benzoquinone catalyzed by cinchona alkaloids. Tetrahedron: Asymmetry, 2015, 26, 1382-1387.	1.8	16
79	Organocatalytic Asymmetric Fluorination of 4‣ubstituted Isoxazolinones. European Journal of Organic Chemistry, 2015, 2015, 2143-2147.	2.4	38
80	Hydration of Nitriles to Amides by Thiolate-Bridged Diiron Complexes. Organometallics, 2015, 34, 3571-3576.	2.3	29
81	Synthesis and Reactivity of Thioether-Dithiolate-Bridged Multi-iron Complexes. Organometallics, 2015, 34, 1661-1667.	2.3	30
82	Zinc chloride catalyzed stereoselective construction of spiropyrazolone tetrahydroquinolines via tandem [1,5]-hydride shift/cyclization sequence. RSC Advances, 2015, 5, 86056-86060.	3.6	21
83	Synthesis and Electrocatalytic Property of Diiron Hydride Complexes Derived from a Thiolate-Bridged Diiron Complex. Inorganic Chemistry, 2015, 54, 10243-10249.	4.0	54
84	An Organocatalytic Asymmetric Friedel–Crafts Addition/Fluorination Sequence: Construction of Oxindole–Pyrazolone Conjugates Bearing Vicinal Tetrasubstituted Stereocenters. Organic Letters, 2015, 17, 5168-5171.	4.6	114
85	Catalytic asymmetric construction of spiro[pyrrolidine-2,3′-oxindole] scaffolds through chiral phosphoric acid-catalyzed 1,3-dipolar cycloaddition involving 3-amino oxindoles. Chemical Communications, 2015, 51, 15510-15513.	4.1	50
86	Organocatalytic enantioselective α-amination of 5-substituted rhodanines: an efficient approach to chiral N,S-acetals. Organic and Biomolecular Chemistry, 2014, 12, 9097-9100.	2.8	24
87	Novel tartrate-derived guanidine-catalyzed highly enantio- and diastereoselective Michael addition of 3-substituted oxindoles to nitroolefins. Chemical Communications, 2014, 50, 5760.	4.1	47
88	Novel Tartrate-Based Guanidines for Enantioselective Fluorination of 1,3-Dicarbonyl and α-Cyano Carbonyl Compounds. Australian Journal of Chemistry, 2014, 67, 1115.	0.9	21
89	Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic. Nature Chemistry, 2013, 5, 320-326.	13.6	139
90	Development of Tartaric Acid Derived Chiral Guanidines and Their Application to Catalytic Enantioselective α-Hydroxylation of β-Dicarbonyl Compounds. Organic Letters, 2013, 15, 3106-3109.	4.6	91

#	Article	IF	CITATIONS
91	Friedel–Crafts-Type Allylation of Nitrogen-Containing Aromatic Compounds with Allylic Alcohols Catalyzed by a [Mo ₃ S ₄ Pd(η ³ -allyl)] Cluster. Journal of Organic Chemistry, 2012, 77, 2942-2946.	3.2	45
92	Highly Efficient and Regioselective Allylation with Allylic Alcohols Catalyzed by [Mo ₃ S ₄ Pd(l· ³ -allyl)] Clusters. Organic Letters, 2010, 12, 2726-2729.	4.6	70
93	Enantioselective Nitroaldol Reaction of α-Ketoesters Catalyzed by Cinchona Alkaloids. Journal of the American Chemical Society, 2006, 128, 732-733.	13.7	332
94	Asymmetric 1,3-dipolar cycloaddition of 4-aminopyrazolone-based azomethine ylides: a straightforward approach to spiropyrazolones. Organic Chemistry Frontiers, 0, , .	4.5	0