
Kamil Awsiuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1944536/publications.pdf Version: 2024-02-01

KAMIL AWSILIK

#	Article	IF	CITATIONS
1	PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 13-22.	3.1	62
2	Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly(N-isopropylacrylamide): Wettability, morphology, and protein adsorption. Journal of Colloid and Interface Science, 2012, 387, 95-105.	9.4	45
3	Protein adsorption and covalent bonding to silicon nitride surfaces modified with organo-silanes: Comparison using AFM, angle-resolved XPS and multivariate ToF-SIMS analysis. Colloids and Surfaces B: Biointerfaces, 2013, 110, 217-224.	5.0	42
4	Spectroscopic and microscopic characterization of biosensor surfaces with protein/amino-organosilane/silicon structure. Colloids and Surfaces B: Biointerfaces, 2012, 90, 159-168.	5.0	40
5	Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption. Journal of Colloid and Interface Science, 2013, 411, 247-256.	9.4	39
6	Temperature-Controlled Orientation of Proteins on Temperature-Responsive Grafted Polymer Brushes: Poly(butyl methacrylate) vs Poly(butyl acrylate): Morphology, Wetting, and Protein Adsorption. Biomacromolecules, 2019, 20, 2185-2197.	5.4	36
7	Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Advances, 2020, 10, 10155-10166.	3.6	36
8	Physico-chemical properties of PDMS surfaces suitable as substrates for cell cultures. Applied Surface Science, 2016, 389, 247-254.	6.1	34
9	"Command―surfaces with thermo-switchable antibacterial activity. Materials Science and Engineering C, 2019, 103, 109806.	7.3	34
10	Temperature-responsive properties of poly(4-vinylpyridine) coatings: influence of temperature on the wettability, morphology, and protein adsorption. RSC Advances, 2016, 6, 87469-87477.	3.6	33
11	Temperature-responsive grafted polymer brushes obtained from renewable sources with potential application as substrates for tissue engineering. Applied Surface Science, 2017, 407, 546-554.	6.1	29
12	Effects of Polythiophene Surface Structure on Adsorption and Conformation of Bovine Serum Albumin: A Multivariate and Multitechnique Study. Langmuir, 2014, 30, 13925-13933.	3.5	27
13	Shape-Controlled synthesis of silver nanoparticles in temperature-responsive grafted polymer brushes for optical applications. Applied Surface Science, 2019, 463, 1124-1133.	6.1	27
14	Cholesterol-Based Grafted Polymer Brushes as Alignment Coating with Temperature-Tuned Anchoring for Nematic Liquid Crystals. Langmuir, 2016, 32, 11029-11038.	3.5	25
15	Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials, 2021, 14, 1417.	2.9	24
16	Model immunoassay on silicon surfaces: Vertical and lateral nanostructure vs. protein coverage. Colloids and Surfaces B: Biointerfaces, 2013, 103, 253-260.	5.0	23
17	Synthesis and Postpolymerization Modification of Thermoresponsive Coatings Based on Pentaerythritol Monomethacrylate: Surface Analysis, Wettability, and Protein Adsorption. Langmuir, 2015, 31, 9675-9683.	3.5	23
18	Protein coverage on silicon surfaces modified with amino-organic films: A study by AFM and angle-resolved XPS. Colloids and Surfaces B: Biointerfaces, 2010, 80, 63-71.	5.0	22

Kamil Awsiuk

#	Article	IF	CITATIONS
19	Temperature-responsive peptide-mimetic coating based on poly(N-methacryloyl-l-leucine): Properties, protein adsorption and cell growth. Colloids and Surfaces B: Biointerfaces, 2014, 118, 270-279.	5.0	22
20	Differentiation between Single Bladder Cancer Cells Using Principal Component Analysis of Time-of-Flight Secondary Ion Mass Spectrometry. Analytical Chemistry, 2015, 87, 3195-3201.	6.5	19
21	Protocol of single cells preparation for time of flight secondary ionÂmass spectrometry. Analytical Biochemistry, 2016, 511, 52-60.	2.4	19
22	Glass transition in temperature-responsive poly(butyl methacrylate) grafted polymer brushes. Impact of thickness and temperature on wetting, morphology, and cell growth. Journal of Materials Chemistry B, 2018, 6, 1613-1621.	5.8	19
23	Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors. Applied Surface Science, 2016, 385, 529-542.	6.1	18
24	Transition between stable hydrophilization and fast etching/hydrophilization of poly(methyl)methacrylate polymer using a novel atmospheric pressure dielectric barrier discharge source. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 041303.	2.1	17
25	Immobilization and detection of platelet-derived extracellular vesicles on functionalized silicon substrate: cytometric and spectrometric approach. Analytical and Bioanalytical Chemistry, 2017, 409, 1109-1119.	3.7	17
26	Biophysical and Biochemical Characteristics as Complementary Indicators of Melanoma Progression. Analytical Chemistry, 2019, 91, 9885-9892.	6.5	17
27	Spectroscopic and microscopic examination of protein adsorption and blocking of non-specific binding to silicon surfaces modified with APTES and GOPS. Procedia Engineering, 2011, 25, 334-337.	1.2	16
28	Polymer blends spinâ€cast into films with complementary elements for electronics and biotechnology. Journal of Applied Polymer Science, 2012, 125, 4275-4284.	2.6	16
29	Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin–streptavidin system. Analyst, The, 2015, 140, 1127-1139.	3.5	15
30	Orientation and biorecognition of immunoglobulin adsorbed on spin-cast poly(3-alkylthiophenes): Impact of polymer film crystallinity. Colloids and Surfaces B: Biointerfaces, 2016, 148, 278-286.	5.0	15
31	Controlling orientation, conformation, and biorecognition of proteins on silane monolayers, conjugate polymers, and thermo-responsive polymer brushes: investigations using TOF-SIMS and principal component analysis. Colloid and Polymer Science, 2021, 299, 385-405.	2.1	14
32	Indirect immunoassay on functionalized silicon surface: Molecular arrangement, composition and orientation examined step-by-step with multi-technique and multivariate analysis. Colloids and Surfaces B: Biointerfaces, 2017, 150, 437-444.	5.0	13
33	Impact of the various buffer solutions on the temperature-responsive properties of POEGMA-grafted brush coatings. Colloid and Polymer Science, 2022, 300, 487-495.	2.1	12
34	Buried polymer/metal interfaces examined with Kelvin Probe Force Microscopy. Thin Solid Films, 2013, 531, 271-276.	1.8	11
35	Protein adsorption/desorption and antibody binding stoichiometry on silicon interferometric biosensors examined with TOF-SIMS. Applied Surface Science, 2018, 444, 187-196.	6.1	10
36	Dewetting of Polymer Films Controlled by Protein Adsorption. Langmuir, 2020, 36, 11817-11828.	3.5	10

Kamil Awsiuk

#	Article	IF	CITATIONS
37	Immobilization of oligonucleotide probes on silicon surfaces using biotin–streptavidin system examined with microscopic and spectroscopic techniques. Applied Surface Science, 2014, 290, 199-206.	6.1	9
38	Improved DNA microarray detection sensitivity through immobilization of preformed in solution streptavidin/biotinylated oligonucleotide conjugates. Colloids and Surfaces B: Biointerfaces, 2015, 128, 464-472.	5.0	9
39	Contact pin-printing of albumin-fungicide conjugate for silicon nitride-based sensors biofunctionalization: Multi-technique surface analysis for optimum immunoassay performance. Applied Surface Science, 2017, 410, 79-86.	6.1	9
40	Orientation of Biotin-Binding Sites in Streptavidin Adsorbed onto the Surface of Polythiophene Films. Langmuir, 2019, 35, 3058-3066.	3.5	9
41	Plasma-Assisted Nanoscale Protein Patterning on Si Substrates via Colloidal Lithography. Journal of Physical Chemistry A, 2013, 117, 13743-13751.	2.5	7
42	Proteins grouped into a variety of regular micro-patterns by substrate-guided domains of self-assembling poly(ethylene oxide)/polystyrene blends. Soft Matter, 2012, 8, 5550.	2.7	6
43	Effect of Substrate Stiffness on Physicochemical Properties of Normal and Fibrotic Lung Fibroblasts. Materials, 2020, 13, 4495.	2.9	6
44	Comparing surface properties of melanoma cells using time of flight secondary ions mass spectrometry. Analyst, The, 2016, 141, 6217-6225.	3.5	5
45	Patterning of cancerous cells driven by a combined modification of mechanical and chemical properties of the substrate. European Polymer Journal, 2017, 93, 726-732.	5.4	5
46	Multilayers of poly(styrene/α- tert -butoxy-ω-vinylbenzyl-polyglycidol) microspheres with core-shell morphology: Characterization by AFM, SIMS and XPS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 200-209.	4.7	4
47	Sequential binary protein patterning on surface domains of thermo-responsive polymer blends cast by horizontal-dipping. Materials Science and Engineering C, 2019, 99, 1477-1484.	7.3	4
48	Spatially selective biomolecules immobilization on silicon nitride waveguides through contact printing onto plasma treated photolithographic micropattern: Step-by-step analysis with TOF-SIMS chemical imaging. Applied Surface Science, 2020, 506, 145002.	6.1	4
49	Grafted polymer brush coatings for growth of cow granulosa cells and oocyte-cumulus cell complexes. Biointerphases, 2020, 15, 031006.	1.6	4
50	Effect of poly(tert-butyl methacrylate) stereoregularity on polymer film interactions with peptides, proteins, and bacteria. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112248.	5.0	4
51	A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication. Frontiers of Chemical Science and Engineering, 2019, 13, 475-484.	4.4	3
52	Discrimination between NSIP- and IPF-Derived Fibroblasts Based on Multi-Parameter Characterization of Their Growth, Morphology and Physic-Chemical Properties. International Journal of Molecular Sciences, 2022, 23, 2162.	4.1	2
53	Data on step-by-step atomic force microscopy monitoring of changes occurring in single melanoma cells undergoing ToF SIMS specialized sample preparation protocol. Data in Brief, 2016, 8, 1322-1332.	1.0	1
54	Influence of Acrylic Polymers Stereoregularity on Interface Interactions in Model Thin Film Systems. Macromolecular Chemistry and Physics, 2018, 219, 1800097.	2.2	1

KANALI	Awsiuk
NAIVIIL	AWSIUK

#	Article	IF	CITATIONS
55	Electrically Switchable Film Structure of Conjugated Polymer Composites. Materials, 2022, 15, 2219.	2.9	Ο