Kuk Ro Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1944364/publications.pdf Version: 2024-02-01

257450 254184 1,986 53 24 43 h-index citations g-index papers 53 53 53 1946 docs citations times ranked citing authors all docs

KUK PO YOON

#	Article	IF	CITATIONS
1	One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors. Journal of Energy Chemistry, 2022, 65, 116-126.	12.9	101
2	Al-doped Co9S8 encapsulated by nitrogen-doped graphene for solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2022, 428, 132470.	12.7	74
3	Biodegradable Polymeric Nanocomposites for Wastewater Treatment. Engineering Materials, 2022, , 245-298.	0.6	7
4	Ceria-Zirconia nanoparticles reduce intracellular globotriaosylceramide accumulation and attenuate kidney injury by enhancing the autophagy flux in cellular and animal models of Fabry disease. Journal of Nanobiotechnology, 2022, 20, 125.	9.1	8
5	Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. Journal of Environmental Chemical Engineering, 2021, 9, 104702.	6.7	114
6	Facile synthesis of Cu-PBA nanocubes/graphene oxide composite as binder-free electrodes for supercapacitor. Journal of Alloys and Compounds, 2021, 859, 157868.	5.5	55
7	Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. International Journal of Biological Macromolecules, 2021, 167, 1113-1125.	7.5	102
8	Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose, 2021, 28, 5087-5105.	4.9	58
9	Novel vapor polymerization for integrating flame retardant textile with multifunctional properties. Composites Communications, 2021, 24, 100614.	6.3	52
10	Carbon Nanotube–Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials. Journal of Industrial and Engineering Chemistry, 2021, 97, 239-249.	5.8	51
11	N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. International Journal of Biological Macromolecules, 2021, 182, 680-688.	7.5	54
12	Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye. International Journal of Biological Macromolecules, 2021, 191, 385-395.	7.5	52
13	Good dispersion of poly(Î^gluconolactone)-grafted graphene in poly(vinyl alcohol) for significantly enhanced mechanical strength. Materials Chemistry and Physics, 2020, 254, 123465.	4.0	27
14	Prussian blue and its analogues as advanced supercapacitor electrodes. Journal of Energy Chemistry, 2020, 50, 206-229.	12.9	127
15	Exfoliated graphene-manganese oxide nanocomposite electrode materials for supercapacitor. Journal of Alloys and Compounds, 2019, 770, 1189-1199.	5.5	55
16	Tunability of Porous CuCo ₂ O ₄ Architectures as Highâ€Performance Electrode Materials for Supercapacitors. ChemNanoMat, 2019, 5, 1398-1407.	2.8	31
17	Smart bactericidal filter containing biodegradable polymers for crystal violet dye adsorption. Cellulose, 2019, 26, 9179-9206.	4.9	49
18	Preparation and characterization of manganese oxide nanosheets for pseudocapacitor application. Journal of Energy Storage, 2019, 25, 100851.	8.1	12

Κυκ Ro Yoon

#	Article	IF	CITATIONS
19	Halloysite nanotubes based electrochemical sensors: A review. Microchemical Journal, 2019, 147, 1083-1096.	4.5	99
20	Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochimica Acta, 2018, 268, 304-315.	5.2	79
21	Sulfur-doped nickel oxide spherical nanosheets for redox supercapacitors. Journal of Industrial and Engineering Chemistry, 2018, 62, 321-328.	5.8	16
22	Mesoporous polypyrrole-Ag nanocomposites for supercapacitors. Journal of Alloys and Compounds, 2018, 742, 610-618.	5.5	22
23	Honeycomb-like manganese oxide nanospheres for redox supercapacitors. Ionics, 2018, 24, 523-528.	2.4	2
24	Halloysite nanotubes as smart flame retardant and economic reinforcing materials: A review. Thermochimica Acta, 2018, 669, 173-184.	2.7	105
25	Synthesis and characterization of MnO 2 -decorated graphene for supercapacitors. Electrochimica Acta, 2017, 231, 749-758.	5.2	79
26	Preparation and performance of polyaniline–multiwall carbon nanotubes–titanium dioxide ternary composite electrode material for supercapacitors. Journal of Industrial and Engineering Chemistry, 2017, 49, 82-87.	5.8	49
27	Ultra-thin and ultra-long α-MnO2 nanowires for pseudocapacitor material. Journal of Solid State Electrochemistry, 2017, 21, 3215-3220.	2.5	18
28	Liquid crystal dimers having vary oxyethylene flexible spacers. Molecular Crystals and Liquid Crystals, 2017, 650, 1-6.	0.9	4
29	Porous manganese oxide nanospheres for pseudocapacitor applications. Journal of Alloys and Compounds, 2017, 695, 771-778.	5.5	25
30	Synthesis and <i>In Vitro/In Vivo</i> Evaluation of Gd-Complex Utilizing Dendritic Ligands as a Magnetic Resonance Contrast Agent. Journal of Nanoscience and Nanotechnology, 2017, 17, 5818-5821.	0.9	2
31	Polyaniline–nickel oxide nanocomposites for supercapacitor. Journal of Applied Electrochemistry, 2016, 46, 1039-1047.	2.9	66
32	Synthesis and characterization nanocomposite of polyacrylamide-rGO-Ag-PEDOT/PSS hydrogels by photo polymerization method. Polymers for Advanced Technologies, 2016, 27, 366-373.	3.2	12
33	Chemical Synthesis of Sea-Urchin Shaped 3D-MnO2 Nano Structures and Their Application in Supercapacitors. Journal of Nanoscience and Nanotechnology, 2016, 16, 6093-6101.	0.9	4
34	Cyclodextrinâ€Triazole Derivative Functionalized on Ag– <scp>SiO₂</scp> Core–Shell Nanoparticles via Click Chemistry. Bulletin of the Korean Chemical Society, 2016, 37, 1501-1508.	1.9	1
35	Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials. Journal of Solid State Electrochemistry, 2016, 20, 3447-3457.	2.5	38
36	Fabrication and characterization of doubleâ€network agarose/polyacrylamide nanofibers by electrospinning. Journal of Applied Polymer Science, 2016, 133, .	2.6	8

Κυκ Ro Yoon

#	Article	IF	CITATIONS
37	Synthesis and performance of nickel hydroxide nanodiscs for redox supercapacitors. Ionics, 2016, 22, 1485-1491.	2.4	16
38	Porous 3D-β-nickel hydroxide microflowers for electrochemical supercapacitors. Journal of Industrial and Engineering Chemistry, 2016, 33, 374-380.	5.8	16
39	Graft polymerization of <i>p</i> -dioxanone onto polyhydroxyethylaspartamide through ring-opening polymerization using organometallic and enzyme catalysts. Designed Monomers and Polymers, 2013, 16, 407-416.	1.6	8
40	Polycondensation of Sebacic Acid with Primary and Secondary Hydroxyl Groups Containing Diols Catalyzed by <i>Candida antarctica</i> Lipase B. Synthetic Communications, 2012, 42, 3504-3512.	2.1	16
41	Poly(vinyl alcohol) and layered double hydroxide composites: Thermal and mechanical properties. Journal of Applied Polymer Science, 2010, 116, 1671-1677.	2.6	26
42	Surfaceâ€initiated atomâ€transfer radical polymerization of 3―O â€methacryloylâ€1,2:5,6â€di―O â€isoprop â€glucofuranoside onto gold surface. Journal of Biomedical Materials Research - Part A, 2009, 88A, 735-740.	ylideneâ€Í 4.0	±â€•D 10
43	Surface functionalization of multiâ€walled carbon nanotubes through surfaceâ€initiated atom transfer radical polymerization of glycidyl methacrylate. Surface and Interface Analysis, 2009, 41, 303-309.	1.8	19
44	Surface initiatedâ€atom transfer radical polymerization of a sugar methacrylate on gold nanoparticles. Surface and Interface Analysis, 2008, 40, 1139-1143.	1.8	26
45	Surfaceâ€initiated ringâ€opening polymerization of <i>p</i> â€dioxanone on Wang resin bead. Journal of Polymer Science Part A, 2008, 46, 1178-1184.	2.3	4
46	Direct grafting of εâ€caprolactone on solid core/mesoporous shell silica spheres by surfaceâ€initiated ringâ€opening polymerization. Journal of Applied Polymer Science, 2008, 107, 2689-2694.	2.6	10
47	Thermal and physicomechanical properties of ethyleneâ€vinyl acetate copolymer and layered double hydroxide composites. Journal of Applied Polymer Science, 2008, 108, 4090-4095.	2.6	15
48	Synthesis of Symmetric Liquid Crystal Dimers Based on Azo and Imine Groups and Investigation of Phase Behaviour by Varying Alkoxy Terminal Chain Length. Molecular Crystals and Liquid Crystals, 2008, 492, 102/[466]-116/[480].	0.9	1
49	Synthesis of Symmetric Liquid Crystal Dimers Based on by Varying Alkoxy Terminal Chain Length. Molecular Crystals and Liquid Crystals, 2008, 492, 117/[481]-129/[493].	0.9	2
50	Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. Journal of Materials Chemistry, 2007, 17, 1758.	6.7	139
51	Uniform grafting of poly(1,5-dioxepan-2-one) by surface-initiated, ring-opening polymerization. Macromolecular Research, 2006, 14, 205-208.	2.4	3
52	Synthesis and Characterization of Nonlinear Optical Polymers Containing Carbazole and Disperse Red Dye. Journal of Macromolecular Science - Physics, 2006, 45, 859-870.	1.0	4
53	Two-Dimensional Nanomaterials as Smart Flame Retardants for Polyurethane. ACS Symposium Series, 0, , 189-219.	0.5	13