## Evgeny V Podryabinkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1944162/publications.pdf

Version: 2024-02-01

21 1,915 15 19
papers citations h-index g-index

21 21 21 1549
all docs docs citations times ranked citing authors

| #  | Article                                                                                                                                                                                                                               | IF          | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 1  | Active learning of linearly parametrized interatomic potentials. Computational Materials Science, 2017, 140, 171-180.                                                                                                                 | 3.0         | 360       |
| 2  | Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Physical Review B, $2019, 99, .$                                                                                           | 3.2         | 229       |
| 3  | Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Computational Materials Science, 2019, 156, 148-156.                                                                             | 3.0         | 218       |
| 4  | The MLIP package: moment tensor potentials with MPI and active learning. Machine Learning: Science and Technology, 2021, 2, 025002.                                                                                                   | 5.0         | 181       |
| 5  | Firstâ€Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene<br>Heterostructures Empowered by Machineâ€Learning Interatomic Potentials. Advanced Materials, 2021,<br>33, e2102807.                            | 21.0        | 171       |
| 6  | Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures. Materials Horizons, 2020, 7, 2359-2367.                                   | 12.2        | 124       |
| 7  | Machine learning of molecular properties: Locality and active learning. Journal of Chemical Physics, 2018, 148, 241727.                                                                                                               | 3.0         | 116       |
| 8  | Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution. Computer Physics Communications, 2021, 258, 107583.                                             | <b>7.</b> 5 | 108       |
| 9  | Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials. Applied Materials Today, 2020, 20, 100685.                                                                                  | 4.3         | 96        |
| 10 | Young's Modulus and Tensile Strength of Ti <sub>3</sub> C <sub>2</sub> MXene Nanosheets As<br>Revealed by <i>In Situ</i> TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations.<br>Nano Letters, 2020, 20, 5900-5908. | 9.1         | 88        |
| 11 | Moment tensor potentials as a promising tool to study diffusion processes. Computational Materials Science, 2019, 164, 46-56.                                                                                                         | 3.0         | 65        |
| 12 | High thermal conductivity in semiconducting Janus and non-Janus diamanes. Carbon, 2020, 167, 51-61.                                                                                                                                   | 10.3        | 39        |
| 13 | Efficient machine-learning based interatomic potentialsfor exploring thermal conductivity in two-dimensional materials. JPhys Materials, 2020, 3, 02LT02.                                                                             | 4.2         | 32        |
| 14 | Elinvar effect in $\hat{I}^2$ -Ti simulated by on-the-fly trained moment tensor potential. New Journal of Physics, 2020, 22, 113005.                                                                                                  | 2.9         | 20        |
| 15 | Modeling of steady Herschel–Bulkley fluid flow over a sphere. Journal of Engineering Thermophysics, 2017, 26, 197-215.                                                                                                                | 1.4         | 16        |
| 16 | Active Learning and Uncertainty Estimation. Lecture Notes in Physics, 2020, , 309-329.                                                                                                                                                | 0.7         | 13        |
| 17 | Moment and forces exerted on the inner cylinder in eccentric annular flow. Journal of Engineering Thermophysics, 2011, 20, 320-328.                                                                                                   | 1.4         | 12        |
| 18 | Nanohardness from First Principles with Active Learning on Atomic Environments. Journal of Chemical Theory and Computation, 2022, 18, 1109-1121.                                                                                      | 5.3         | 10        |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Detailed Modeling of Drilling Fluid Flow in a Wellbore Annulus While Drilling. , 2013, , .                                                                            |     | 8         |
| 20 | Modeling of turbulent annular flows of Hershel-Bulkley fluids with eccentricity and inner cylinder rotation. Journal of Engineering Thermophysics, 2014, 23, 137-147. | 1.4 | 6         |
| 21 | Evaluation of Pressure Change While Steady-State Tripping. , 2014, , .                                                                                                |     | 3         |