Johannes Herkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1943351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of target antigen for SLA/LP autoantibodies in autoimmune hepatitis. Lancet, The, 2000, 355, 1510-1515.	6.3	318
2	Pregnancy in Autoimmune Hepatitis: Outcome and Risk Factors. American Journal of Gastroenterology, 2006, 101, 556-560.	0.2	200
3	TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. Journal of Hepatology, 2014, 61, 594-599.	1.8	185
4	FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. Journal of Hepatology, 2012, 57, 125-132.	1.8	174
5	Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. Journal of Hepatology, 2015, 62, 1349-1356.	1.8	145
6	Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. Journal of Clinical Investigation, 2008, 118, 3403-10.	3.9	142
7	Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology, 2013, 58, 1084-1093.	3.6	132
8	MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocyutes. Hepatology, 2003, 37, 1079-1085.	3.6	131
9	ILâ€6 transâ€signaling is essential for the development of hepatocellular carcinoma in mice. Hepatology, 2017, 65, 89-103.	3.6	125
10	Activin A Promotes the TGF-β-Induced Conversion of CD4+CD25â^' T Cells into Foxp3+ Induced Regulatory T Cells. Journal of Immunology, 2009, 182, 4633-4640.	0.4	111
11	IL-10 Receptor Signaling Is Essential for TR1 Cell Function In Vivo. Journal of Immunology, 2017, 198, 1130-1141.	0.4	108
12	Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. Journal of Hepatology, 2013, 58, 112-118.	1.8	91
13	Reduced FOXP3+ regulatory T cells in patients with primary sclerosing cholangitis are associated with IL2RA gene polymorphisms. Journal of Hepatology, 2014, 60, 1010-1016.	1.8	90
14	Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology, 2005, 42, 193-199.	3.6	88
15	Evaluation of F-Actin ELISA for the Diagnosis of Autoimmune Hepatitis. American Journal of Gastroenterology, 2006, 101, 2731-2736.	0.2	82
16	CXCR3 Deficiency Exacerbates Liver Disease and Abrogates Tolerance in a Mouse Model of Immune-Mediated Hepatitis. Journal of Immunology, 2011, 186, 5284-5293.	0.4	75
17	ldiotypic immunization induces immunity to mutated p53 and tumor rejection. Nature Medicine, 1998, 4, 710-712.	15.2	58
18	Fine specificity of autoantibodies to soluble liver antigen and liver/pancreas. Hepatology, 2002, 35, 403-408.	3.6	56

JOHANNES HERKEL

#	Article	IF	CITATIONS
19	Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. Journal of Lipid Research, 2011, 52, 745-758.	2.0	55
20	CD4 T cells in hepatic immune tolerance. Journal of Autoimmunity, 2010, 34, 23-28.	3.0	52
21	Testosterone Suppresses Hepatic Inflammation by the Downregulation of IL-17, CXCL-9, and CXCL-10 in a Mouse Model of Experimental Acute Cholangitis. Journal of Immunology, 2015, 194, 2522-2530.	0.4	50
22	Monocytes as Potential Mediators of Pathogenâ€Induced Tâ€Helper 17 Differentiation in Patients With Primary Sclerosing Cholangitis (PSC). Hepatology, 2020, 72, 1310-1326.	3.6	50
23	P38 MAP Kinase Signaling Is Required for the Conversion of CD4+CD25â^' T Cells into iTreg. PLoS ONE, 2008, 3, e3302.	1.1	50
24	Autoimmunity to the p53 Protein is a Feature of Systemic Lupus Erythematosus (SLE) Related to Anti-DNA Antibodies. Journal of Autoimmunity, 2001, 17, 63-69.	3.0	49
25	Identification of CD4 T-Cell Epitopes in Soluble Liver Antigen/Liver Pancreas Autoantigen in Autoimmune Hepatitis. Gastroenterology, 2008, 135, 2107-2118.	0.6	42
26	Defective T Helper Response of Hepatocyte-Stimulated CD4 T Cells Impairs Antiviral CD8 Response and Viral Clearance. Gastroenterology, 2007, 133, 2010-2018.	0.6	39
27	TNF-Producing Th1 Cells Are Selectively Expanded in Liver Infiltrates of Patients with Autoimmune Hepatitis. Journal of Immunology, 2019, 203, 3148-3156.	0.4	35
28	Review article: unanswered clinical and research questions in autoimmune hepatitisâ€conclusions of the International Autoimmune Hepatitis Group Research Workshop. Alimentary Pharmacology and Therapeutics, 2019, 49, 528-536.	1.9	33
29	Immune-mediated liver injury. Journal of Hepatology, 2005, 42, 920-923.	1.8	30
30	CD4+ T-Cell Help Is Required for Effective CD8+ T Cell-Mediated Resolution of Acute Viral Hepatitis in Mice. PLoS ONE, 2014, 9, e86348.	1.1	28
31	Systemic lupus erythematosus in mice, spontaneous and induced, is associated with autoimmunity to the C-terminal domain of p53 that recognizes damaged DNA. European Journal of Immunology, 2000, 30, 977-984.	1.6	26
32	Dysfunction of hepatic regulatory T cells in experimental sclerosing cholangitis is related to IL-12 signaling. Journal of Hepatology, 2017, 66, 798-805.	1.8	26
33	Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis. Journal of Hepatology, 2019, 71, 783-792.	1.8	26
34	Chronic Inflammatory IFN-Î ³ Signaling Suppresses Hepatocarcinogenesis in Mice by Sensitizing Hepatocytes for Apoptosis. Cancer Research, 2011, 71, 3763-3771.	0.4	24
35	Attenuated viral hepatitis in Trem1â^'/â^' mice is associated with reduced inflammatory activity of neutrophils. Scientific Reports, 2016, 6, 28556.	1.6	22
36	Humoral Mechanisms in T cell Vaccination: Induction and Functional Characterization of Anti-lymphocytic Autoantibodies. Journal of Autoimmunity, 1997, 10, 137-146.	3.0	19

JOHANNES HERKEL

#	Article	IF	CITATIONS
37	Human SepSecS or SLA/LP: selenocysteine formation and autoimmune hepatitis. Biological Chemistry, 2010, 391, 771-6.	1.2	19
38	Regulatory T Cells in Hepatic Immune Tolerance and Autoimmune Liver Diseases. Digestive Diseases, 2015, 33, 70-74.	0.8	19
39	CCL21â€expression and accumulation of CCR7 ⁺ NK cells in livers of patients with primary sclerosing cholangitis. European Journal of Immunology, 2019, 49, 758-769.	1.6	18
40	IL-17A/F enable cholangiocytes to restrict T cell-driven experimental cholangitis by upregulating PD-L1 expression. Journal of Hepatology, 2021, 74, 919-930.	1.8	18
41	Dietary and metabolic modulators of hepatic immunity. Seminars in Immunopathology, 2018, 40, 175-188.	2.8	16
42	Colitis Promotes a Pathological Condition of the Liver in the Absence of Foxp3+ Regulatory T Cells. Journal of Immunology, 2018, 201, 3558-3568.	0.4	16
43	Inflammatory Phenotype of Intrahepatic Sulfatide-Reactive Type II NKT Cells in Humans With Autoimmune Hepatitis. Frontiers in Immunology, 2019, 10, 1065.	2.2	16
44	CD4+ T cells from patients with primary sclerosing cholangitis exhibit reduced apoptosis and down-regulation of proapoptotic Bim in peripheral blood. Journal of Leukocyte Biology, 2017, 101, 589-597.	1.5	15
45	Cell-autonomous hepatocyte-specific GP130 signaling is sufficient to trigger a robust innate immune response in mice. Journal of Hepatology, 2021, 74, 407-418.	1.8	15
46	Prevalence of Autoantibodies to the p53 Protein in Autoimmune Hepatitis. Autoimmunity, 2002, 35, 493-496.	1.2	14
47	Monoclonal antibody to a DNA-binding domain of p53 mimics charge structure of DNA: anti-idiotypes to the anti-p53 antibody are anti-DNA. European Journal of Immunology, 2004, 34, 3623-3632.	1.6	14
48	Autoimmune hepatitis: Possible triggers, potential treatments. Journal of Hepatology, 2020, 73, 446-448.	1.8	12
49	Aryl Hydrocarbon Receptor Activity in Hepatocytes Sensitizes to Hyperacute Acetaminophen-Induced Hepatotoxicity in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 371-388.	2.3	11
50	Nanoparticleâ€mediated targeting of autoantigen peptide to crossâ€presenting liver sinusoidal endothelial cells protects from CD8 Tâ€cellâ€driven autoimmune cholangitis. Immunology, 2021, 162, 452-463.	2.0	11
51	Response to Dr. Granito et al American Journal of Gastroenterology, 2007, 102, 1132-1132.	0.2	9
52	Activation of the Akt– <scp>CREB</scp> signalling axis by a prolineâ€rich heptapeptide confers resistance to stressâ€induced cell death and inflammation. Immunology, 2017, 151, 474-480.	2.0	8
53	Failure of thymic deletion and instability of autoreactive Tregs drive autoimmunity in immune-privileged liver. JCI Insight, 2021, 6, .	2.3	8
54	Harnessing the liver to induce antigen-specific immune tolerance. Seminars in Immunopathology, 2022, 44, 475-484.	2.8	8

JOHANNES HERKEL

#	Article	IF	CITATIONS
55	Selenocysteine, soluble liver antigen/liver-pancreas, and autoimmune hepatitis. Hepatology, 2007, 46, 275-277.	3.6	7
56	Significance of autoantibodies. Hepatology, 2008, 47, 786-788.	3.6	7
57	Let it B in viral hepatitis?. Journal of Hepatology, 2011, 55, 5-7.	1.8	7
58	Reply to: "Regulatory T cells in autoimmune hepatitis― Journal of Hepatology, 2012, 57, 933-934.	1.8	7
59	Characterization of human gene encoding SLA/LP autoantigen and its conserved homologs in mouse, fish, fly, and worm. World Journal of Gastroenterology, 2006, 12, 902.	1.4	6
60	Phenotypic alterations of regulatory T cells in autoimmune hepatitis: Causal or associated with treatment and remission?. Hepatology, 2015, 61, 736-737.	3.6	5
61	Inflammatory type 2 conventional dendritic cells contribute to murine and human cholangitis. Journal of Hepatology, 2022, 77, 1532-1544.	1.8	5
62	Can Understanding the Pathogenesis of Autoimmune Hepatitis Lead to Rational Therapy?. Digestive Diseases, 2017, 35, 367-370.	0.8	4
63	Chronic liver inflammation dominated by interferon-γ can prevent hepatocarcinogenesis. Oncolmmunology, 2012, 1, 222-223.	2.1	3
64	Liver sinusoidal cells collecting MHC-I molecules: You can't get enough of a good thing. Journal of Hepatology, 2014, 61, 464-465.	1.8	3
65	T-cell repertoire profiling by next-generation sequencing reveals tissue migration dynamics of TRBV13-family clonotypes in a common experimental autoimmune encephalomyelitis mouse model. Journal of Neuroimmunology, 2019, 332, 49-56.	1.1	3
66	Reply to: "T regulatory cell number and function: The autoimmune traits in liver diseases― Journal of Hepatology, 2012, 57, 1399-1400.	1.8	2
67	Th17 cells bound for the liver: Group tourists or private travellers?. Journal of Hepatology, 2012, 57, 943-945.	1.8	2
68	Reply to: "Anti-TNF-induced autoimmune hepatitis― Journal of Hepatology, 2014, 61, 170-171.	1.8	2
69	Reply to: "Regulatory T cell defects in autoimmune hepatitis― Journal of Hepatology, 2012, 57, 1155-1156.	1.8	1
70	Deciphering the highway code for lymphocyte traffic along the gut – liver axis. Journal of Hepatology, 2014, 60, 1110-1111.	1.8	1
71	Mediators of liver inflammation and carcinogenesis. Seminars in Immunopathology, 2021, 43, 477-479.	2.8	1

#	Article	IF	CITATIONS
73	Tregs in the Liver. , 2014, , 1225-1228.		0