Achim Menges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1943061/publications.pdf

Version: 2024-02-01

all docs

304743 315739 74 1,825 22 38 h-index citations g-index papers 78 78 78 1169 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Additive Manufacturing of Large Coreless Filament Wound Composite Elements for Building Construction. 3D Printing and Additive Manufacturing, 2022, 9, 145-160.	2.9	17
2	Computational co-design framework for coreless wound fibre–polymer composite structures. Journal of Computational Design and Engineering, 2022, 9, 310-329.	3.1	14
3	Visualization for Architecture, Engineering, and Construction: Shaping the Future of Our Built World. IEEE Computer Graphics and Applications, 2022, 42, 10-20.	1.2	9
4	Advanced Timber Construction Industry: A Review of 350 Multi-Storey Timber Projects from 2000–2021. Buildings, 2022, 12, 404.	3.1	43
5	Learning Robotic Manipulation of Natural Materials With Variable Properties for Construction Tasks. IEEE Robotics and Automation Letters, 2022, 7, 5749-5756.	5.1	4
6	Synthesising Artificial Intelligence and Physical Performance. Architectural Design, 2022, 92, 94-99.	0.1	4
7	Autonomous robotic additive manufacturing through distributed modelâ€free deep reinforcement learning in computational design environments. Construction Robotics, 2022, 6, 15-37.	2.2	6
8	Leveraging Building Material as Part of the Inâ€Plane Robotic Kinematic System for Collective Construction. Advanced Science, 2022, 9, .	11.2	5
9	Soft Office: a human–robot collaborative system for adaptive spatial configuration. Construction Robotics, 2021, 5, 23-33.	2.2	5
10	Netzwerk der Zukunft. Bautechnik, 2021, 98, 193-193.	0.1	0
11	Bioâ€Inspired Motion Mechanisms: Computational Design and Material Programming of Selfâ€Adjusting 4Dâ€Printed Wearable Systems. Advanced Science, 2021, 8, 2100411.	11.2	27
12	Development of an Impregnation End-Effector with Fiber Tension Monitoring for Robotic Coreless Filament Winding. Processes, 2021, 9, 806.	2.8	20
13	Integrative computational design and construction: Rethinking architecture digitally. Civil Engineering Design, 2021, 3, 123-135.	1.9	21
14	Robotic coreless filament winding for hyperboloid tubular composite components in construction. Automation in Construction, 2021, 126, 103649.	9.8	30
15	Programming material compliance and actuation: hybrid additive fabrication of biocomposite structures for large-scale self-shaping. Bioinspiration and Biomimetics, 2021, 16, 055004.	2.9	11
16	Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration and Biomimetics, 2021, 16, 055002.	2.9	30
17	Designing architectural materials: from granular form to functional granular material. Bioinspiration and Biomimetics, 2021, 16, 065010.	2.9	7
18	Urbach Tower: Integrative structural design of a lightweight structure made of self-shaped curved cross-laminated timber. Structures, 2021, 33, 3667-3681.	3.6	6

#	Article	IF	CITATIONS
19	Semi-automated braiding of complex, spatially branched FRP-structures. Composite Structures, 2021, 276, 114551.	5.8	O
20	Development of a Material Design Space for 4D-Printed Bio-Inspired Hygroscopically Actuated Bilayer Structures with Unequal Effective Layer Widths. Biomimetics, 2021, 6, 58.	3.3	11
21	Flexible and transportable robotic timber construction platform – TIM. Automation in Construction, 2020, 120, 103400.	9.8	65
22	Adaptive kinematic textile architecture. Construction Robotics, 2020, 4, 227-237.	2.2	2
23	Physically distributed multi-robot coordination and collaboration in construction. Construction Robotics, 2020, 4, 3-18.	2.2	12
24	Computational analysis of hygromorphic self-shaping wood gridshell structures. Royal Society Open Science, 2020, 7, 192210.	2.4	12
25	Spatial winding: cooperative heterogeneous multi-robot system for fibrous structures. Construction Robotics, 2020, 4, 205-215.	2.2	18
26	Towards digital automation flexibility in large-scale timber construction: integrative robotic prefabrication and co-design of the BUGA Wood Pavilion. Construction Robotics, 2020, 4, 187-204.	2.2	39
27	Autonomous anchoring for robotic construction. Automation in Construction, 2020, 120, 103391.	9.8	12
28	Plant Movements as Concept Generators for the Development of Biomimetic Compliant Mechanisms. Integrative and Comparative Biology, 2020, 60, 886-895.	2.0	29
29	On-site autonomous construction robots: Towards unsupervised building. Automation in Construction, 2020, 119, 103312.	9.8	124
30	Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients. Science Advances, 2020, 6, eaay0929.	10.3	66
31	Programming Material Intelligence: An Additive Fabrication Strategy for Self-shaping Biohybrid Components. Lecture Notes in Computer Science, 2020, , 36-45.	1.3	6
32	4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190445.	3.4	59
33	Self-shaping Curved Folding:., 2020,,.		17
34	Multifunctional Mesostructures: DesignÂandÂMaterialÂProgrammingÂforÂ4D-printing. , 2020, , .		12
35	BUGA FIBRE PAVILION:. , 2020, , 234-243.		6
36	Robust Task and Motion Planning for Long-Horizon Architectural Construction Planning. , 2020, , .		15

#	Article	IF	Citations
37	Construction robotics for designed granular materials: in situ construction with designed granular materials at full architectural scale using a cable-driven parallel robot. Construction Robotics, 2019, 3, 41-52.	2.2	4
38	Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances, 2019, 5, eaax1311.	10.3	29
39	Distributed Fabrication: Cooperative Making with Larger Groups of Smaller Machines. Architectural Design, 2019, 89, 62-69.	0.1	9
40	Tailored Structures, Robotic Sewing of Wooden Shells. , 2019, , 405-420.		4
41	Implementation of an Augmented Reality AR Workflow for Human Robot Collaboration in Timber Prefabrication. , 2019, , .		41
42	Hygroscopically actuated wood elements for weather responsive and self-forming building parts – Facilitating upscaling and complex shape changes. Construction and Building Materials, 2018, 165, 782-791.	7.2	46
43	A novel rapid additive manufacturing concept for architectural composite shell construction inspired by the shell formation in land snails. Bioinspiration and Biomimetics, 2018, 13, 026010.	2.9	13
44	Toward a New Generation of Smart Biomimetic Actuators for Architecture. Advanced Materials, 2018, 30, e1703653.	21.0	108
45	An interactive agent-based framework for materialization-informed architectural design. Swarm Intelligence, 2018, 12, 155-186.	2.2	23
46	Biomimetic Actuators: Toward a New Generation of Smart Biomimetic Actuators for Architecture (Adv. Mater. 19/2018). Advanced Materials, 2018, 30, 1870135.	21.0	4
47	Vibrational Collapse of Hexapod Packings. EPJ Web of Conferences, 2017, 140, 06011.	0.3	4
48	Granular Construction: Designed Particles for Macroâ€Scale Architectural Structures. Architectural Design, 2017, 87, 88-93.	0.1	6
49	ELYTRA FILAMENT PAVILION:., 2017,, 224-231.		11
50	Packings of 3D stars: stability and structure. Granular Matter, 2016, 18, 1.	2.2	20
51	Towards an aggregate architecture: designed granular systems as programmable matter in architecture. Granular Matter, 2016, 18, 1.	2.2	34
52	Computational Material Culture. Architectural Design, 2016, 86, 76-83.	0.1	10
53	Material computation—4D timber construction: Towards building-scale hygroscopic actuated, self-constructing timber surfaces. International Journal of Architectural Computing, 2016, 14, 49-62.	1.5	31
54	Evolutionary structural and spatial adaptation of topologically differentiated tensile systems in architectural design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2015, 29, 393-415.	1.1	6

#	Article	IF	CITATIONS
55	ICD/ITKE Research Pavilion 2013â€14: Modular Coreless Filament Winding Based on Beetle Elytra. Architectural Design, 2015, 85, 54-59.	0.1	13
56	Granular Morphologies: Programming Material Behaviour with Designed Aggregates. Architectural Design, 2015, 85, 86-91.	0.1	10
57	Performative Wood: Physically Programming the Responsive Architecture of the <i>HygroScope</i> and HygroSkin Projects. Architectural Design, 2015, 85, 66-73.	0.1	23
58	3D-Printed Wood: Programming Hygroscopic Material Transformations. 3D Printing and Additive Manufacturing, 2015, 2, 106-116.	2.9	129
59	Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. CAD Computer Aided Design, 2015, 60, 50-69.	2.7	141
60	Fibrous structures: An integrative approach to design computation, simulation and fabrication for lightweight, glass and carbon fibre composite structures in architecture based on biomimetic design principles. CAD Computer Aided Design, 2014, 52, 27-39.	2.7	62
61	Core-Less Filament Winding. , 2014, , 275-289.		18
62	Morphospaces of Robotic Fabrication. , 2013, , 28-47.		21
63	From Nature to Fabrication: Biomimetic Design Principles for the Production of Complex Spatial Structures. International Journal of Space Structures, 2013, 28, 27-39.	1.0	37
64	Bionisch-inspirierte Faserverbundstrukturen. Bautechnik, 2013, 90, 766-771.	0.1	4
65	Biomimetic design processes in architecture: morphogenetic and evolutionary computational design. Bioinspiration and Biomimetics, 2012, 7, 015003.	2.9	49
66	Material Computation: Higher Integration in Morphogenetic Design. Architectural Design, 2012, 82, 14-21.	0.1	48
67	Aggregate Structures: Material and Machine Computation of Designed Granular Substances. Architectural Design, 2012, 82, 74-81.	0.1	17
68	Patterns in Performance-Orientated Design: An Approach towards Pattern Recognition, Generation and Instrumentalisation. Architectural Design, 2009, 79, 88-93.	0.1	5
69	Material Performance. Architectural Design, 2008, 78, 34-41.	0.1	6
70	Manufacturing Performance. Architectural Design, 2008, 78, 42-47.	0.1	4
71	Membrane Spaces. Architectural Design, 2008, 78, 74-79.	0.1	3
72	Aggregates. Architectural Design, 2008, 78, 80-87.	0.1	5

ACHIM MENGES

#	Article	IF	CITATIONS
73	Michael Hensel; Frei Otto;. Architectural Design, 2006, 76, 78-87.	0.1	7
74	Advancing Wood Architecture., 0,,.		32