
Heather M Nonhebel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1943008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reinvestigation of THOUSAND-GRAIN WEIGHT 6 grain weight genes in wheat and rice indicates a role in pollen development rather than regulation of auxin content in grains. Theoretical and Applied Genetics, 2021, 134, 2051-2062.	3.6	9
2	Localised expression of OsIAA29 suggests a key role for auxin in regulating development of the dorsal aleurone of early rice grains. Planta, 2021, 254, 40.	3.2	10
3	Expression of key auxin biosynthesis genes correlates with auxin and starch content of developing		

Heather M Nonhebel

#	Article	IF	CITATIONS
19	Contrasting Incorporation of2H from2H2O into ABA, Xanthoxin and Carotenoids in Tomato Shoots. Journal of Experimental Botany, 1987, 38, 980-991.	4.8	19
20	Direct separation of (S)- and (R)-abscisic acid on a commercially available chiral high-performance liquid chromatographic column. Journal of Chromatography A, 1987, 402, 374-375.	3.7	8
21	Incorporation of2H from2H2O into ABA in Tomato Shoots: Evidence for a Large Pool of Precursors. Journal of Experimental Botany, 1986, 37, 1533-1541.	4.8	12
22	Measurement of the Rates of Oxindole-3-Acetic Acid Turnover, and Indole-3-Acetic Acid Oxidation inZea maysSeedlings. Journal of Experimental Botany, 1986, 37, 1691-1697.	4.8	14
23	Metabolism of [14C]indole-3-acetic acid by the cortical and stelar tissues of Zea mays L. roots. Planta, 1985, 164, 105-108.	3.2	14
24	Metabolism of [14C]Indole-3-Acetic Acid by Coleoptiles ofZea maysL Journal of Experimental Botany, 1985, 36, 99-109.	4.8	16
25	Oxidation of Indole-3-acetic Acid and Oxindole-3-acetic Acid to 2,3-Dihydro-7-hydroxy-2-oxo-1 <i>H</i> Indole-3-acetic Acid-7â€2- <i>O</i> -β-d-Glucopyranoside in <i>Zea mays</i> Seedlings. Plant Physiology, 1984, 76, 979-983.	4.8	39
26	Analysis of [14C] indole-3-acetic acid metabolites from the primary roots of Zea mays seedlings using reverse-phase high-performance liquid chromatography. Physiologia Plantarum, 1983, 57, 129-134.	5.2	30
27	A p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans. F1000Research, 0, , .	1.6	1