Heather M Nonhebel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1943008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase <i>OsTAR1</i> and a grainâ€specific <i>YUCCA</i> . Physiologia Plantarum, 2012, 146, 487-499.	5.2	99
2	A p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans. F1000Research, 2013, 2, 72.	1.6	54
3	Oxidation of Indole-3-acetic Acid and Oxindole-3-acetic Acid to 2,3-Dihydro-7-hydroxy-2-oxo-1 <i>H</i> Indole-3-acetic Acid-7′- <i>O</i> -β-d-Glucopyranoside in <i>Zea mays</i> Seedlings. Plant Physiology, 1984, 76, 979-983.	4.8	39
4	Tryptophan-Independent Indole-3-Acetic Acid Synthesis: Critical Evaluation of the Evidence. Plant Physiology, 2015, 169, 1001-1005.	4.8	39
5	Hormonal regulation of cereal endosperm development with a focus on rice (Oryza sativa). Functional Plant Biology, 2019, 46, 493.	2.1	32
6	Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development. Plants, 2014, 3, 95-112.	3.5	31
7	Analysis of [14C] indole-3-acetic acid metabolites from the primary roots of Zea mays seedlings using reverse-phase high-performance liquid chromatography. Physiologia Plantarum, 1983, 57, 129-134.	5.2	30
8	Induced tolerance of <i>Sclerotinia sclerotiorum</i> to isothiocyanates and toxic volatiles from <i>Brassica</i> species. Plant Pathology, 2009, 58, 479-486.	2.4	29
9	Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. Phytochemistry, 2011, 72, 37-48.	2.9	27
10	The measurement and mass spectral identification of indole-3-pyruvate from tomato shoots. Biochemical and Biophysical Research Communications, 1989, 162, 761-766.	2.1	21
11	The Route, Control and Compartmentation of Auxin Synthesis. Functional Plant Biology, 1993, 20, 527.	2.1	20
12	Contrasting Incorporation of2H from2H2O into ABA, Xanthoxin and Carotenoids in Tomato Shoots. Journal of Experimental Botany, 1987, 38, 980-991.	4.8	19
13	Metabolism of [14C]Indole-3-Acetic Acid by Coleoptiles ofZea maysL Journal of Experimental Botany, 1985, 36, 99-109.	4.8	16
14	Production and roles of IAA and ABA during development of superior and inferior rice grains. Functional Plant Biology, 2020, 47, 716.	2.1	15
15	Metabolism of [14C]indole-3-acetic acid by the cortical and stelar tissues of Zea mays L. roots. Planta, 1985, 164, 105-108.	3.2	14
16	Measurement of the Rates of Oxindole-3-Acetic Acid Turnover, and Indole-3-Acetic Acid Oxidation inZea maysSeedlings. Journal of Experimental Botany, 1986, 37, 1691-1697.	4.8	14
17	Incorporation of2H from2H2O into ABA in Tomato Shoots: Evidence for a Large Pool of Precursors. Journal of Experimental Botany, 1986, 37, 1533-1541.	4.8	12
18	Reaction of glucosinolate-myrosinase defence system in Brassica plants to pathogenicity factor of Sclerotinia sclerotiorum. European Journal of Plant Pathology, 2010, 128, 429-433.	1.7	11

Heather M Nonhebel

#	Article	IF	CITATIONS
19	2,7-Dimethylocta-2,4-dienedioic acid is not a by-product of abscisic acid biosynthesis. Plant Science, 1988, 56, 49-53.	3.6	10
20	Partial purification and characterisation of an aromatic amino acid aminotransferase from mung bean (Vigna radiata L. Wilczek). Planta, 1997, 201, 71-77.	3.2	10
21	Localised expression of OsIAA29 suggests a key role for auxin in regulating development of the dorsal aleurone of early rice grains. Planta, 2021, 254, 40.	3.2	10
22	Reinvestigation of THOUSAND-GRAIN WEIGHT 6 grain weight genes in wheat and rice indicates a role in pollen development rather than regulation of auxin content in grains. Theoretical and Applied Genetics, 2021, 134, 2051-2062.	3.6	9
23	Direct separation of (S)- and (R)-abscisic acid on a commercially available chiral high-performance liquid chromatographic column. Journal of Chromatography A, 1987, 402, 374-375.	3.7	8
24	SHORT COMMUNICATION Factors Affecting Protoplast Culture ofCucumis melo'Green Delica'. Annals of Botany, 1998, 81, 775-777.	2.9	7
25	Toxicity of hydrolysis volatile products ofBrassicaplants toSclerotinia sclerotiorum,in vitro. Archives of Phytopathology and Plant Protection, 2014, 47, 1860-1865.	1.3	4

26 Expression of key auxin biosynthesis genes correlates with auxin and starch content of developing