Sang Woo Han Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/194267/publications.pdf Version: 2024-02-01

SANC MOO HAN HAN

#	Article	IF	CITATIONS
1	Controlled Synthesis of Pd–Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for Oxygen Reduction. ACS Nano, 2012, 6, 2410-2419.	7.3	348
2	One-Step Synthesis of Au@Pd Coreâ^'Shell Nanooctahedron. Journal of the American Chemical Society, 2009, 131, 17036-17037.	6.6	327
3	Quantitative and Multiplexed MicroRNA Sensing in Living Cells Based on Peptide Nucleic Acid and Nano Graphene Oxide (PANGO). ACS Nano, 2013, 7, 5882-5891.	7.3	281
4	Dodecanethiol-Derivatized Au/Ag Bimetallic Nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis. Journal of Colloid and Interface Science, 1998, 208, 272-278.	5.0	270
5	Synthesis and Electrocatalytic Activity of Auâ^'Pd Alloy Nanodendrites for Ethanol Oxidation. Journal of Physical Chemistry C, 2010, 114, 7689-7693.	1.5	217
6	Atomicâ€Ðistributionâ€Ðependent Electrocatalytic Activity of Au–Pd Bimetallic Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 8876-8880.	7.2	201
7	Ultrathin Freeâ€Standing Ternaryâ€Alloy Nanosheets. Angewandte Chemie - International Edition, 2016, 55, 2753-2758.	7.2	197
8	One-Pot Synthesis of Trimetallic Au@PdPt Core–Shell Nanoparticles with High Catalytic Performance. ACS Nano, 2013, 7, 7945-7955.	7.3	192
9	Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chemical Communications, 2001, , 1782-1783.	2.2	182
10	Controlled Synthesis of Icosahedral Gold Nanoparticles and Their Surface-Enhanced Raman Scattering Property. Journal of Physical Chemistry C, 2007, 111, 1161-1165.	1.5	168
11	Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study. Journal of Colloid and Interface Science, 2001, 240, 391-399.	5.0	162
12	Synthesis and Characterization of Flower-Shaped Porous Auâ^'Pd Alloy Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 6717-6722.	1.5	157
13	Hexoctahedral Au Nanocrystals with High-Index Facets and Their Optical and Surface-Enhanced Raman Scattering Properties. Journal of the American Chemical Society, 2012, 134, 4565-4568.	6.6	155
14	Metal–Semiconductor Heteronanocrystals with Desired Configurations for Plasmonic Photocatalysis. Journal of the American Chemical Society, 2016, 138, 15766-15773.	6.6	138
15	Real-Space Mapping of the Strongly Coupled Plasmons of Nanoparticle Dimers. Nano Letters, 2009, 9, 3619-3625.	4.5	134
16	A New Route toward Ultrasensitive, Flexible Chemical Sensors: Metal Nanotubes by Wet-Chemical Synthesis along Sacrificial Nanowire Templates. ACS Nano, 2012, 6, 598-608.	7.3	133
17	Convex Polyhedral Au@Pd Core–Shell Nanocrystals with Highâ€Index Facets. Angewandte Chemie - International Edition, 2012, 51, 159-163.	7.2	131
18	Self-Assembled Monolayers of Aromatic Thiol and Selenol on Silver:Â Comparative Study of Adsorptivity and Stability. Langmuir, 2001, 17, 6981-6987.	1.6	129

#	Article	IF	CITATIONS
19	Synthesis of AuPt Heteronanostructures with Enhanced Electrocatalytic Activity toward Oxygen Reduction. Angewandte Chemie - International Edition, 2010, 49, 10197-10201.	7.2	129
20	Polyhedral Au Nanocrystals Exclusively Bound by {110} Facets: The Rhombic Dodecahedron. Journal of the American Chemical Society, 2009, 131, 1672-1673.	6.6	126
21	Bioactive Protein Nanoarrays on Nickel Oxide Surfaces Formed by Dip-Pen Nanolithography. Angewandte Chemie - International Edition, 2004, 43, 1246-1249.	7.2	120
22	High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties. Journal of Colloid and Interface Science, 2009, 329, 97-102.	5.0	113
23	The direct growth of gold rods on graphene thin films. Chemical Communications, 2010, 46, 3185.	2.2	105
24	Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by {110} Facets: Au–Pd Rhombic Dodecahedra. Angewandte Chemie - International Edition, 2011, 50, 3466-3470.	7.2	103
25	Composition-Controlled PtCo Alloy Nanocubes with Tuned Electrocatalytic Activity for Oxygen Reduction. ACS Applied Materials & Interfaces, 2012, 4, 6228-6234.	4.0	103
26	Adsorption Characteristics of Anthraquinone-2-carboxylic Acid on Gold. Journal of Physical Chemistry B, 2000, 104, 11987-11995.	1.2	102
27	One-Pot Synthesis of Monodisperse 5 nm Pd–Ni Nanoalloys for Electrocatalytic Ethanol Oxidation. ACS Applied Materials & Interfaces, 2012, 4, 4208-4214.	4.0	97
28	Adsorption Characteristics ofp-Xylene-α,αâ€~-dithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering and Ellipsometry Study. Journal of Physical Chemistry B, 1999, 103, 10831-10837.	1.2	95
29	Anisotropic Assembly of Ag Nanoprisms. Journal of the American Chemical Society, 2008, 130, 5432-5433.	6.6	95
30	Graphene Oxide Sheath on Ag Nanoparticle/Graphene Hybrid Films as an Antioxidative Coating and Enhancer of Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2012, 4, 6545-6551.	4.0	93
31	Structure and Thermal Behavior of a Layered Silver Carboxylate. Journal of Physical Chemistry B, 2002, 106, 2892-2900.	1.2	89
32	Designed Synthesis of Wellâ€Defined Pd@Pt Core–Shell Nanoparticles with Controlled Shell Thickness as Efficient Oxygen Reduction Electrocatalysts. Chemistry - A European Journal, 2013, 19, 8190-8198.	1.7	89
33	Cytoprotective Alginate/Polydopamine Core/Shell Microcapsules in Microbial Encapsulation. Angewandte Chemie - International Edition, 2014, 53, 14443-14446.	7.2	88
34	Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition. ACS Catalysis, 2019, 9, 819-826.	5.5	88
35	The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials, 2013, 34, 3503-3510.	5.7	85
36	High Performance Organic Photovoltaics with Plasmonic-Coupled Metal Nanoparticle Clusters. ACS Nano, 2014, 8, 10305-10312.	7.3	85

#	Article	IF	CITATIONS
37	One-pot synthesis and electrocatalytic activity of octapodal Au–Pd nanoparticles. Chemical Communications, 2011, 47, 2553.	2.2	81
38	Assembly of Metal Nanoparticleâ^'Carbon Nanotube Composite Materials at the Liquid/Liquid Interface. Langmuir, 2006, 22, 1817-1821.	1.6	77
39	Shaping Pd nanocatalysts through the control of reaction sequence. Chemical Communications, 2010, 46, 1535.	2.2	74
40	Multimetallic Alloy Nanotubes with Nanoporous Framework. ACS Nano, 2012, 6, 5659-5667.	7.3	74
41	Optical nonlinearities of Au nanoparticles and Au/Ag coreshells. Optics Letters, 2009, 34, 307.	1.7	73
42	Infrared Matrix Isolation Study of Acetone and Methanol in Solid Argon. The Journal of Physical Chemistry, 1996, 100, 17124-17132.	2.9	72
43	Adsorption of 1,4-Phenylene Diisocyanide on Silver Investigated by Infrared and Raman Spectroscopy. Langmuir, 1999, 15, 6868-6874.	1.6	71
44	Patterning of Organic Monolayers on Silver via Surface-Induced Photoreaction. Langmuir, 2002, 18, 182-187.	1.6	70
45	Chemical composition and antimicrobial activity of Chamaecyparis obtusa leaf essential oil. FìtoterapìÁ¢, 2007, 78, 149-152.	1.1	69
46	Electro-inductive effect: Electrodes as functional groups with tunable electronic properties. Science, 2020, 370, 214-219.	6.0	67
47	Nanoparticle-Directed Crystallization of Calcium Carbonate. Advanced Materials, 2001, 13, 1617-1620.	11.1	64
48	Discovery of Hepatitisâ€C Virus NS3 Helicase Inhibitors by a Multiplexed, Highâ€Throughput Helicase Activity Assay Based on Graphene Oxide. Angewandte Chemie - International Edition, 2013, 52, 2340-2344.	7.2	64
49	Synthesis and characterization of Pt9Co nanocubes with high activity for oxygen reduction. Chemical Communications, 2010, 46, 4950.	2.2	62
50	Multilayer Formation of 1,2-Ethanedithiol on Gold:Â Surface-Enhanced Raman Scattering and Ellipsometry Study. Langmuir, 2000, 16, 5391-5396.	1.6	60
51	Shapeâ€Controlled Synthesis of Pt ₃ Co Nanocrystals with High Electrocatalytic Activity toward Oxygen Reduction. Chemistry - A European Journal, 2011, 17, 12280-12284.	1.7	58
52	Phosphinite-Ni(0) Mediated Formation of a Phosphide-Ni(II)-OCOOMe Species via Uncommon Metal–Ligand Cooperation. Journal of the American Chemical Society, 2015, 137, 4280-4283.	6.6	58
53	Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Molecules and Cells, 2006, 21, 129-34.	1.0	57
54	Adsorption Characteristics of 1,3-Propanedithiol on Gold:  Surface-Enhanced Raman Scattering and Ellipsometry Study. Journal of Physical Chemistry B, 2000, 104, 6218-6224.	1.2	56

#	Article	IF	CITATIONS
55	Ultrasensitive electrochemical immunosensing using magnetic beads and gold nanocatalysts. Biosensors and Bioelectronics, 2008, 23, 932-938.	5.3	56
56	Nobleâ€Metal Nanocrystals with Controlled Facets for Electrocatalysis. Chemistry - an Asian Journal, 2016, 11, 2224-2239.	1.7	56
57	Metal–semiconductor yolk–shell heteronanostructures for plasmon-enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 4068-4078.	5.2	56
58	One-step synthesis of gold nanoparticles using azacryptand and their applications in SERS and catalysis. Journal of Colloid and Interface Science, 2007, 316, 476-481.	5.0	55
59	Adsorption characteristics of 4-dimethylaminobenzoic acid on silver and titania: diffuse reflectance infrared Fourier transform spectroscopy study. Vibrational Spectroscopy, 2000, 24, 265-275.	1.2	54
60	Cadmium(ii) and mercury(ii) complexes of an NO2S2-donor macrocycle and its ditopic xylyl-bridged analogue. Dalton Transactions, 2005, , 788.	1.6	54
61	Kinetically Controlled Growth of Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by Highâ€Index Facets: Au–Pd Hexoctahedra. Small, 2013, 9, 660-665.	5.2	54
62	Synthesis, Optical Properties, and Multiplexed Raman Bioâ€Imaging of Surface Roughnessâ€Controlled Nanobridged Nanogap Particles. Small, 2016, 12, 4726-4734.	5.2	54
63	Morphology of multilayers assembled by electrostatic attraction of oppositely charged model polyelectrolytes. Thin Solid Films, 1999, 350, 153-160.	0.8	53
64	Oneâ€Pot Synthesis of Carbon‧upported Dendritic Pdâ€Au Nanoalloys for Electrocatalytic Ethanol Oxidation. Chemistry - an Asian Journal, 2011, 6, 909-913.	1.7	51
65	Adsorption and stability of phthalic acid on a colloidal silver surface: surface-enhanced Raman scattering study. Journal of Raman Spectroscopy, 2000, 31, 145-150.	1.2	50
66	Size-controlled synthesis of monodisperse gold nanooctahedrons and their surface-enhanced Raman scattering properties. Chemical Physics Letters, 2009, 468, 245-248.	1.2	46
67	Fabrication of metal nanoparticles–carbon nanotubes composite materials in solution. Chemical Physics Letters, 2007, 440, 249-252.	1.2	44
68	The facet-dependent enhanced catalytic activity of Pd nanocrystals. Chemical Communications, 2014, 50, 9454.	2.2	43
69	Trisoctahedral Au–Pd Alloy Nanocrystals with Highâ€Index Facets and Their Excellent Catalytic Performance. Chemistry - A European Journal, 2012, 18, 16626-16630.	1.7	42
70	Universal Sulfide-Assisted Synthesis of M–Ag Heterodimers (M = Pd, Au, Pt) as Efficient Platforms for Fabricating Metal–Semiconductor Heteronanostructures. Journal of the American Chemical Society, 2014, 136, 5221-5224.	6.6	42
71	Self-Assembly of Anthraquinone-2-carboxylic Acid on Silver:Â Fourier Transform Infrared Spectroscopy, Ellipsometry, Quartz Crystal Microbalance, and Atomic Force Microscopy Study. Langmuir, 1998, 14, 6113-6120.	1.6	41
72	Oneâ€Pot Synthesis and Electrocatalytic Properties of Pd@Pt Coreâ€Shell Nanocrystals with Tailored Morphologies. Chemistry - A European Journal, 2014, 20, 7901-7905.	1.7	41

#	Article	IF	CITATIONS
73	One-pot production of ceria nanosheet-supported PtNi alloy nanodendrites with high catalytic performance toward methanol oxidation and oxygen reduction. Journal of Materials Chemistry A, 2020, 8, 25842-25849.	5.2	41
74	Simultaneous preparation of SERS-active metal colloids and plates by laser ablation. Journal of Raman Spectroscopy, 2001, 32, 947-952.	1.2	40
75	Adsorption and Reaction of 4-Nitrobenzoic Acid on ω-Functionalized Alkanethiol Monolayers on Powdered Silver:Â Infrared and Raman Spectroscopy Study. Langmuir, 2000, 16, 1149-1157.	1.6	39
76	Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation. Nanoscale, 2014, 6, 4182-4187.	2.8	39
77	One-pot synthesis of Au@Pd core–shell nanocrystals with multiple high- and low-index facets and their high electrocatalytic performance. Nanoscale, 2014, 6, 9798.	2.8	38
78	Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Accounts of Chemical Research, 2022, 55, 831-843.	7.6	38
79	Metal–semiconductor ternary hybrids for efficient visible-light photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 13225-13235.	5.2	37
80	Core–Shell Bimetallic Nanoparticle Trimers for Efficient Light-to-Chemical Energy Conversion. ACS Energy Letters, 2020, 5, 3881-3890.	8.8	37
81	Azobenzene-Incorporated Alkanethiol Monolayer Film on Au(111):Â Reflectionâ~Absorption Infrared Spectroscopy and Atomic Force Microscopy Study. Langmuir, 1999, 15, 1579-1583.	1.6	36
82	Controlled synthesis and characterization of the enhanced local field of octahedral Au nanocrystals. Chemical Communications, 2008, , 6120.	2.2	36
83	A Facile Oneâ€Pot Synthesis and Enhanced Formic Acid Oxidation of Monodisperse Pd–Cu Nanocatalysts. Chemistry - an Asian Journal, 2011, 6, 1515-1519.	1.7	36
84	Dendritic Ternary Alloy Nanocrystals for Enhanced Electrocatalytic Oxidation Reactions. ACS Applied Materials & Interfaces, 2017, 9, 44018-44026.	4.0	36
85	Perfluorocarbon-stabilized silver nanoparticles manufactured from layered silver carboxylates. Chemical Communications, 2002, , 442-443.	2.2	35
86	The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu ₂ O/hexoctahedral Au inverse catalyst. Nanoscale, 2018, 10, 10835-10843.	2.8	35
87	Infrared and Raman spectra of 4-cyanobenzoic acid on powdered silver. Vibrational Spectroscopy, 1999, 21, 133-142.	1.2	34
88	Self-Assembled Monolayers of Organoselenium Compounds on Gold: Surface-Enhanced Raman Scattering Study. Journal of Colloid and Interface Science, 2001, 240, 492-497.	5.0	34
89	Effect of polymeric stabilizers on the catalytic activity of Pt nanoparticles synthesized by laser ablation. Chemical Physics Letters, 2010, 484, 254-257.	1.2	34
90	Ultrathin Free‣tanding Ternaryâ€Alloy Nanosheets. Angewandte Chemie, 2016, 128, 2803-2808.	1.6	34

#	Article	IF	CITATIONS
91	Electrochemical and Vibrational Spectroscopic Characterization of Self-Assembled Monolayers of 1,1â€~Disubstituted Ferrocene Derivatives on Gold. Langmuir, 2000, 16, 9493-9500.	1.6	32
92	Structural Transitions of Octanethiol Self-Assembled Monolayers on Gold Nanoplates after Mild Thermal Annealing. Journal of Physical Chemistry C, 2011, 115, 5868-5874.	1.5	32
93	Facile synthesis of noble metal nanotubes by using ZnO nanowires as sacrificial scaffolds and their electrocatalytic properties. Chemical Communications, 2011, 47, 6299.	2.2	32
94	Regulating the Catalytic Function of Reduced Graphene Oxides Using Capping Agents for Metal-Free Catalysis. ACS Applied Materials & Interfaces, 2017, 9, 1692-1701.	4.0	32
95	Fabrication of nanoporous superstructures through hierarchical self-assembly of nanoparticles. Journal of Materials Chemistry, 2008, 18, 2208.	6.7	31
96	Ultrafast Electron Microscopy Visualizes Acoustic Vibrations of Plasmonic Nanorods at the Interfaces. Matter, 2019, 1, 481-495.	5.0	31
97	Nanogap-tailored Au nanoparticles fabricated by pulsed laser ablation for surface-enhanced Raman scattering. Biosensors and Bioelectronics, 2022, 197, 113766.	5.3	31
98	Effect of ligand structure on the catalytic activity of Au nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 372, 146-150.	2.3	30
99	Au@Pd nanostructures with tunable morphologies and sizes and their enhanced electrocatalytic activity. CrystEngComm, 2013, 15, 7113.	1.3	30
100	Hexameric ring structure of a thermophilic archaeon NADH oxidase that produces predominantly H ₂ O. FEBS Journal, 2008, 275, 5355-5366.	2.2	29
101	Structural and functional characterization of osmotically inducible protein C (OsmC) from Thermococcus kodakaraensis KOD1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 783-788.	1.1	28
102	Novel fabrication method of diverse one-dimensional Pt/ZnO hybrid nanostructures and its sensor application. Nanotechnology, 2011, 22, 035601.	1.3	28
103	Core–Shell Nanoparticle Clusters Enable Synergistic Integration of Plasmonic and Catalytic Functions in a Single Platform. Small, 2017, 13, 1701633.	5.2	28
104	Pt Nanostructures Fabricated by Local Hydrothermal Synthesis for Low-Power Catalytic-Combustion Hydrogen Sensors. ACS Applied Nano Materials, 2021, 4, 7-12.	2.4	28
105	Fabrication of Au–Ag Alloy Nanoprisms with Enhanced Catalytic Activity. Chemistry Letters, 2007, 36, 1350-1351.	0.7	27
106	Reshaping Nanocrystals for Tunable Plasmonic Substrates. ACS Applied Materials & Interfaces, 2012, 4, 5038-5043.	4.0	27
107	Surface-Enhanced Raman Scattering of Aromatic Sulfides in Aqueous Gold Sol. Applied Spectroscopy, 2000, 54, 378-383.	1.2	26
108	Formation of Patterned Continuous Calcium Carbonate Films on Self-Assembled Monolayers via Nanoparticle-Directed Crystallization. Advanced Materials, 2002, 14, 1640-1643.	11.1	26

#	Article	IF	CITATIONS
109	One-step fabrication of gold nanoparticles-silica composites with enhanced catalytic activity. Chemical Physics Letters, 2008, 453, 77-81.	1.2	26
110	Nonplanarity of Adenine: Vibrational Transition Moment Angle Studies in Helium Nanodroplets. Journal of Physical Chemistry A, 2008, 112, 7185-7190.	1.1	26
111	Particleâ€inâ€aâ€Frame Nanostructures with Interior Nanogaps. Angewandte Chemie - International Edition, 2019, 58, 15890-15894.	7.2	25
112	Hierarchical metal–semiconductor–graphene ternary heteronanostructures for plasmon-enhanced wide-range visible-light photocatalysis. Journal of Materials Chemistry A, 2019, 7, 15831-15840.	5.2	25
113	Structure and Thermal Behavior of Layered Silver Perfluorocarboxylates. Journal of Physical Chemistry B, 2002, 106, 7439-7444.	1.2	24
114	Surface-Induced Photoreaction of Benzyl Phenyl Sulfide Monolayers on Silver and Its Application to Preparing Patterned Binary Monolayers. Langmuir, 2000, 16, 9963-9967.	1.6	23
115	Understanding the Grain Boundary Behavior of Bimetallic Platinum–Cobalt Alloy Nanowires toward Oxygen Electro-Reduction. ACS Catalysis, 2022, 12, 3516-3523.	5.5	23
116	o-Xylene-α,αâ€~-dithiol Monolayer Film on Gold:  Fourier Transform Infrared Spectroscopy, Quartz Crystal Microbalance, and Atomic Force Microscopy Study. Langmuir, 1999, 15, 8399-8404.	1.6	22
117	Structure and thermal behavior of a layered silver hydroxyalkanecarboxylate. Journal of Colloid and Interface Science, 2003, 264, 458-466.	5.0	22
118	Control of Microbial Growth in Alginate/Polydopamine Core/Shell Microbeads. Chemistry - an Asian Journal, 2015, 10, 2130-2133.	1.7	22
119	High-yield synthesis of monodisperse polyhedral gold nanoparticles with controllable size and their surface-enhanced Raman scattering activity. Chemical Physics Letters, 2006, 432, 209-212.	1.2	21
120	Oneâ€Pot Synthesis of CeO ₂ â€5upported Pd–Cuâ€Alloy Nanocubes with High Catalytic Activity. Chemistry - A European Journal, 2013, 19, 8053-8057.	1.7	21
121	Probing organic ligands and their binding schemes on nanocrystals by mass spectrometric and FT-IR spectroscopic imaging. Nanoscale, 2016, 8, 4573-4578.	2.8	21
122	Au-Doped Magnetic Silica Nanotube for Binding of Cysteine-Containing Proteins. Chemistry of Materials, 2008, 20, 3809-3813.	3.2	20
123	Simple Electrodeposition of Dendritic Au Rods from Sulfiteâ€Based Au(I) Electrolytes with High Electrocatalytic and SERS Activities. Electroanalysis, 2011, 23, 2030-2035.	1.5	20
124	Oneâ€Pot Selfâ€Templating Synthesis of Pt Hollow Nanostructures and Their Catalytic Properties for CO Oxidation. Chemistry - A European Journal, 2014, 20, 11669-11674.	1.7	20
125	Low-power thermocatalytic hydrogen sensor based on electrodeposited cauliflower-like nanostructured Pt black. Sensors and Actuators B: Chemical, 2021, 329, 129129.	4.0	20
126	Nanoparticle assembly on nanoplates. Chemical Communications, 2009, , 1981.	2.2	19

#	Article	IF	CITATIONS
127	Site-selectively Pt-decorated PdPt bimetallic nanosheets characterized by electrocatalytic property for methanol oxidation. Materials Chemistry and Physics, 2018, 214, 201-208.	2.0	19
128	C60-mediated self-assembly of gold nanoparticles at the liquid/liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275, 79-82.	2.3	18
129	Synthesis and Photocatalytic Properties of Cu ₂ S–Pd ₄ S Hybrid Nanoplates. Chemistry - A European Journal, 2012, 18, 5874-5878.	1.7	18
130	A New Helicase Assay Based on Graphene Oxide for Anti-Viral Drug Development. Molecules and Cells, 2013, 35, 269-273.	1.0	17
131	Polyoxometalateâ€Mediated Oneâ€Pot Synthesis of Pd Nanocrystals with Controlled Morphologies for Efficient Chemical and Electrochemical Catalysis. Chemistry - A European Journal, 2015, 21, 5387-5394.	1.7	17
132	The controlled synthesis of plasmonic nanoparticle clusters as efficient surface-enhanced Raman scattering platforms. Chemical Communications, 2015, 51, 8793-8796.	2.2	17
133	Purification effect of carbon nanotube fibers on their surface modification to develop a high-performance and multifunctional nanocomposite fiber. Carbon, 2021, 173, 376-383.	5.4	17
134	High-Throughput 3D Ensemble Characterization of Individual Core–Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging. ACS Nano, 2021, 15, 4066-4076.	7.3	17
135	Fine Control over the Compositional Structure of Trimetallic Core–Shell Nanocrystals for Enhanced Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 25901-25908.	4.0	15
136	Infrared matrix isolation and ab initio quantum mechanical study of dimethyl ether–methanol complex. Journal of Molecular Structure, 1999, 475, 43-53.	1.8	14
137	Controlled synthesis of highly multi-branched Pt-based alloy nanocrystals with high catalytic performance. CrystEngComm, 2016, 18, 2356-2362.	1.3	14
138	Plasmon-enhanced electrocatalysis from synergistic hybrids of noble metal nanocrystals. Current Opinion in Electrochemistry, 2017, 4, 11-17.	2.5	14
139	Crown ether derivatives-mediated self-assembly of nanoparticles at the liquid/liquid interface. Thin Solid Films, 2006, 515, 2049-2054.	0.8	13
140	Photoelectric Memory Effect in Graphene Heterostructure Field-Effect Transistors Based on Dual Dielectrics. ACS Photonics, 2018, 5, 329-336.	3.2	13
141	Phase behavior of organic-inorganic crystal. European Physical Journal D, 2001, 16, 293-296.	0.6	12
142	Self-assembled silver nanoprisms monolayers at the liquid/liquid interface. Materials Letters, 2006, 60, 1622-1624.	1.3	12
143	Nitrogenâ€Doped Pt/C Electrocatalysts with Enhanced Activity and Stability toward the Oxygen Reduction Reaction. ChemPlusChem, 2013, 78, 1252-1257.	1.3	12
144	Anodized pore structural evolution of focused ion beam patterned Al: direct analysis of branched nanopores and nanosacks. Physical Chemistry Chemical Physics, 2013, 15, 10659.	1.3	11

#	Article	IF	CITATIONS
145	Guided formation of sub-5 nm interstitial gaps between plasmonic nanodisks. Nanoscale, 2015, 7, 8338-8342.	2.8	11
146	<scp>Ag dS Yolk–Shell</scp> Heteronanostructures for <scp>Plasmonâ€Enhanced</scp> Photocatalysis. Bulletin of the Korean Chemical Society, 2021, 42, 806-809.	1.0	11
147	Shape Transformation of Gold Nanoparticles from Octahedron to Cube Depending on in situ Seed-Growth Time. Bulletin of the Korean Chemical Society, 2013, 34, 2243-2244.	1.0	10
148	Colloidal Clusters of Bimetallic Core–Shell Nanoparticles for Enhanced Sensing of Hydrogen in Aqueous Solution. Particle and Particle Systems Characterization, 2018, 35, 1700380.	1.2	10
149	Bio-inspired incorporation of functionalized graphene oxide into carbon nanotube fibers for their efficient mechanical reinforcement. Composites Science and Technology, 2019, 181, 107680.	3.8	10
150	One-Pot Synthesis of Ternary Alloy Hollow Nanostructures with Controlled Morphologies for Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 45538-45546.	4.0	10
151	Nanoparticles inside nanodishes for plasmon excitations. Applied Physics Letters, 2015, 107, .	1.5	9
152	One-pot synthesis of Pd@Pt core–shell nanocrystals for electrocatalysis: control of crystal morphology with polyoxometalate. CrystEngComm, 2016, 18, 6029-6034.	1.3	9
153	Colloidal Clusters of Plasmonic Nanoparticles with Controlled Topological Parameters. ChemNanoMat, 2017, 3, 772-778.	1.5	9
154	A Facile Route for Patterned Growth of Metal–Insulator Carbon Lateral Junction through One-Pot Synthesis. ACS Nano, 2015, 9, 8352-8360.	7.3	8
155	Size-controlled gold nano-tetradecapods with tunable optical and electromagnetic properties. Journal of Materials Chemistry C, 2016, 4, 3149-3156.	2.7	7
156	Organic-Free Au-Pd Alloys on Germanium Substrate via Spontaneous Galvanic Displacement Reaction. Bulletin of the Korean Chemical Society, 2009, 30, 3113-3116.	1.0	7
157	Adsorption Characteristics of Aliphatic Dithiols on Silver and Gold Revealed by Ellipsometry and FT-IR Spectroscopy. Molecular Crystals and Liquid Crystals, 2001, 371, 355-358.	0.3	5
158	Immunosensing Microchip Using Fast and Selective Preparation of an Iridium Oxide Nanoparticleâ€Based Pseudoreference Electrode. Electroanalysis, 2011, 23, 2042-2048.	1.5	5
159	Surface Engineering of Palladium Nanocrystals: Decoupling the Activity of Different Surface Sites on Nanocrystal Catalysts. Angewandte Chemie - International Edition, 2022, , .	7.2	5
160	Shape-dependent adhesion and friction of Au nanoparticles probed with atomic force microscopy. Nanotechnology, 2015, 26, 135707.	1.3	4
161	Controlled synthesis of Au nanoplates at the liquid/liquid interface. Materials Letters, 2009, 63, 480-482.	1.3	3
162	Discovery of Hepatitisâ€C Virus NS3 Helicase Inhibitors by a Multiplexed, Highâ€Throughput Helicase Activity Assay Based on Graphene Oxide. Angewandte Chemie, 2013, 125, 2396-2400.	1.6	3

#	Article	IF	CITATIONS
163	Enhancing the Activity of Platinumâ€Based Nanocrystal Catalysts for Organic Synthesis through Electronic Structure Modification. ChemCatChem, 2016, 8, 2450-2454.	1.8	3
164	Temperature-Dependent FT-IR Spectroscopy Study of Silver 1,9-Nonanedithiolate. Applied Spectroscopy, 2001, 55, 1085-1091.	1.2	2
165	Controlled Growth of Layered Silver Stearate on 2D and 3D Surfaces. ETRI Journal, 2003, 25, 517-522.	1.2	2
166	Physiological Function of Insoluble Dietary Fiber Prepared from Exploded Oak Wood (Quercus) Tj ETQq0 0 0 rgBT	/Qyerlock 1.5	10 Tf 50 62
167	Particleâ€inâ€aâ€Frame Nanostructures with Interior Nanogaps. Angewandte Chemie, 2019, 131, 16037-16041.	1.6	2
168	Gold Nanocrystals with Well-Defined Crystallographic {111} Facets Suppress Pathological Neovascularization. Journal of Biomedical Nanotechnology, 2016, 12, 1520-1526.	0.5	2
169	Controlled growth of layered silver stearate on patterned organic monolayers. Journal of Materials Chemistry, 2002, 12, 14-16.	6.7	1
170	Chemical Lithography by Surface-Induced Photoreaction Of Nitro Compounds. ETRI Journal, 2004, 26, 38-44.	1.2	1
171	Alloy Nanocrystals: Kinetically Controlled Growth of Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by Highâ€Index Facets: Au–Pd Hexoctahedra (Small 5/2013). Small, 2013, 9, 646-646.	5.2	1
172	Comparative study of the ToFâ€SIMS, FTâ€IR and XPS techniques for quantitative analyses of mixed selfâ€assembled monolayers. Surface and Interface Analysis, 2014, 46, 110-114.	0.8	1
173	Structural analysis of negative ions by postsource decay in time-of-flight secondary ion mass spectrometry. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 03H133.	0.6	1
174	Pd–Ag Bimetallic Catalysts with Core–Shell Engineering for Efficient Hydrogen Production from Formic Acid Decomposition. ECS Meeting Abstracts, 2022, MA2022-01, 2400-2400.	0.0	1
175	SERS From The Self-Assembled Nanostructures. , 2010, , .		0
176	Formation of Flower-Like Ag Colloids Using Pulsed Proton Beam. Journal of Nanoscience and Nanotechnology, 2012, 12, 4379-4383.	0.9	0
177	Plasmonic Nanostructures: Core–Shell Nanoparticle Clusters Enable Synergistic Integration of Plasmonic and Catalytic Functions in a Single Platform (Small 43/2017). Small, 2017, 13, .	5.2	0
178	Synthesis and Surface-Enhanced Raman Scattering Property of Pentagonal Dodecahedral Au Nanocrystals. Bulletin of the Korean Chemical Society, 2014, 35, 958-960.	1.0	0
179	Surface Engineering of Palladium Nanocrystals: Decoupling the Activity of Different Surface Sites on Nanocrystal Catalysts. Angewandte Chemie, 0, , .	1.6	0