Oscar Vazquez-Mena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1942639/publications.pdf

Version: 2024-02-01

516215 476904 46 901 16 29 citations g-index h-index papers 47 47 47 1371 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	π–π Interactions Mediated Pyrene Based Ligand Enhanced Photoresponse in Hybrid Graphene/PbS Quantum Dots Photodetectors. Advanced Electronic Materials, 2022, 8, 2100672.	2.6	5
2	Measuring the carrier diffusion length in quantum dot films using graphene as photocarrier density probe. Journal of Chemical Physics, 2022, 156, 024702.	1.2	3
3	Design and Fabrication of Negative-Refractive-Index Metamaterial Unit Cells for Near-Megahertz Enhanced Acoustic Transmission in Biomedical Ultrasound Applications. Physical Review Applied, 2021, 15, .	1.5	18
4	High performance Pb+2 detection using CVD-produced high quality multilayer reduced graphene oxide. Nano Express, 2021, 2, 010023.	1.2	2
5	Ultrathin 5 μm Thick Silicon Nanowires Intercalated with Reduced Graphene Oxide Binderless Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6391-6398.	2.5	1
6	High resolution patterning of PbS quantum dots/graphene photodetectors with high responsivity <i>via</i> photolithography with a top graphene layer to protect surface ligands. Nanoscale Advances, 2021, 3, 6206-6212.	2.2	4
7	Direct chemical conversion of continuous CVD graphene/graphite films to graphene oxide without exfoliation. Carbon, 2020, 158, 202-209.	5 . 4	22
8	Enhanced Charge Transfer and Responsivity in Hybrid Quantum Dot/Graphene Photodetectors Using ZnO as Intermediate Electronâ€Collecting Layer. Advanced Electronic Materials, 2020, 6, 2000014.	2.6	16
9	Near full light absorption and full charge collection in 1-micron thick quantum dot photodetector using intercalated graphene monolayer electrodes. Nanoscale, 2020, 12, 4909-4915.	2.8	11
10	Frequency and damping effect of suspended silicon nitride membranes in water near the megahertz range. Journal of Micromechanics and Microengineering, 2020, 30, 125006.	1.5	1
11	Implementation of Metallic Vertical Interconnect Access in Hybrid Intercalated Graphene/Quantum Dot Photodetector for Improved Charge Collection. Frontiers in Materials, 2019, 6, .	1.2	5
12	Electrochemical functionalization strategy for chemical vapor deposited graphene on silicon substrates: grafting, electronic properties and biosensing. Nanotechnology, 2019, 30, 475703.	1.3	2
13	Improved Charge Extraction Beyond Diffusion Length by Layerâ€byâ€Layer Multistacking Intercalation of Graphene Layers inside Quantum Dots Films. Advanced Materials, 2019, 31, e1807894.	11.1	21
14	Optoelectronic response of hybrid PbS-QD/graphene photodetectors. Journal of Chemical Physics, 2019, 151, 234705.	1.2	17
15	Integration of Nanomaterials into Three-Dimensional Vertical Architectures. ACS Applied Materials & amp; Interfaces, 2018, 10, 28262-28268.	4.0	2
16	Metal insulator semiconductor solar cell devices based on a Cu2O substrate utilizing h-BN as an insulating and passivating layer. Applied Physics Letters, 2015, 106, .	1.5	20
17	Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect. Nano Letters, 2014, 14, 4280-4285.	4.5	45
18	Stencil-Nanopatterned Back Reflectors for Thin-Film Amorphous Silicon n-i-p Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 22-26.	1.5	14

#	Article	IF	Citations
19	A novel architecture for photovoltaic devices: Field-effect solar cells using screening-engineered nanoelectrodes for silicon and earth abundant cuprous oxide. , 2013, , .		1
20	A novel architecture for photovoltaic devices: Field-effect solar cells using screening-engineered nanoelectrodes for silicon and earth abundant cuprous oxide., 2013,,.		0
21	Resistless Fabrication of Nanoimprint Lithography (NIL) Stamps Using Nano-Stencil Lithography. Micromachines, 2013, 4, 370-377.	1.4	8
22	All-stencil transistor fabrication on 3D silicon substrates. Journal of Micromechanics and Microengineering, 2012, 22, 095022.	1.5	7
23	Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide. Nanoscale, 2012, 4, 5718.	2.8	70
24	Compliant membranes improve resolution in full-wafer micro/nanostencil lithography. Nanoscale, 2012, 4, 773-778.	2.8	15
25	Stencil-nanopatterned back reflectors for thin-film amorphous silicon n-i-p solar cells. , 2012, , .		1
26	High-Resolution Resistless Nanopatterning on Polymer and Flexible Substrates for Plasmonic Biosensing Using Stencil Masks. ACS Nano, 2012, 6, 5474-5481.	7.3	57
27	Screening-Engineered Field-Effect Solar Cells. Nano Letters, 2012, 12, 4300-4304.	4.5	58
28	Reliable and Improved Nanoscale Stencil Lithography by Membrane Stabilization, Blurring, and Clogging Corrections. IEEE Nanotechnology Magazine, 2011, 10, 352-357.	1.1	26
29	Localized Ion Implantation Through Micro/Nanostencil Masks. IEEE Nanotechnology Magazine, 2011, 10, 940-946.	1.1	16
30	Metallic Nanodot Arrays by Stencil Lithography for Plasmonic Biosensing Applications. ACS Nano, 2011, 5, 844-853.	7.3	87
31	Robust PECVD SiC membrane made for stencil lithography. Microelectronic Engineering, 2011, 88, 2790-2793.	1.1	9
32	Stenciled conducting bismuth nanowires. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 169-172.	0.6	14
33	Minimized blurring in stencil lithography using a compliant membrane. , 2009, , .		1
34	Nanostencil and InkJet Printing for Bionanotechnology Applications. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 222-228.	0.2	1
35	Analysis of the blurring in stencil lithography. Nanotechnology, 2009, 20, 415303.	1.3	60
36	Direct Etching of High Aspect Ratio Structures Through a Stencil. , 2009, , .		4

#	Article	IF	CITATIONS
37	Analysis and applications of nanostructures created by stencil lithography. , 2009, , .		3
38	Focused Ion Beam: A Versatile Technique for the Fabrication of Nano-Devices. Praktische Metallographie/Practical Metallography, 2009, 46, 154-156.	0.1	2
39	Resistivity measurements of gold wires fabricated by stencil lithography on flexible polymer substrates. Microelectronic Engineering, 2008, 85, 1108-1111.	1.1	29
40	Etching of sub-micrometer structures through Stencil. Microelectronic Engineering, 2008, 85, 1010-1014.	1.1	25
41	Reusability of nanostencils for the patterning of Aluminum nanostructures by selective wet etching. Microelectronic Engineering, 2008, 85, 1237-1240.	1.1	29
42	A single nanotrench in a palladium microwire for hydrogen detection. Nanotechnology, 2008, 19, 125502.	1.3	61
43	Metallic Nanowires by Full Wafer Stencil Lithography. Nano Letters, 2008, 8, 3675-3682.	4. 5	101
44	Sub-100 nm-scale aluminum nanowires by stencil lithography: Fabrication and characterization. , 2008,		1
45	Patterning of parallel nanobridge structures by reverse nanostencil lithography using an edge-patterned stencil. Nanotechnology, 2007, 18, 044002.	1.3	6
46	Negativeâ€Index Acoustic Metamaterial Operating above 100 kHz in Water Using Microstructured Silicon Chips as Unit Cells. Advanced Materials Technologies, 0, , 2200407.	3.0	0