
Paige J Novak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1942386/publications.pdf Version: 2024-02-01

PAICE I NOVAK

#	Article	IF	CITATIONS
1	Natural Niche for Organohalide-Respiring Chloroflexi. Applied and Environmental Microbiology, 2012, 78, 393-401.	1.4	172
2	Effect of Protein, Polysaccharide, and Oxygen Concentration Profiles on Biofilm Cohesiveness. Applied and Environmental Microbiology, 2007, 73, 2905-2910.	1.4	150
3	Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Science of the Total Environment, 2016, 551-552, 605-613.	3.9	134
4	Root Exudate Enhanced Contaminant Desorption: An Abiotic Contribution to the Rhizosphere Effect. Environmental Science & Technology, 2013, 47, 11545-11553.	4.6	124
5	Biofilm Cohesiveness Measurement Using a Novel Atomic Force Microscopy Methodology. Applied and Environmental Microbiology, 2007, 73, 2897-2904.	1.4	119
6	Sediment–water distribution of contaminants of emerging concern in a mixed use watershed. Science of the Total Environment, 2015, 505, 896-904.	3.9	74
7	Partitioning and Accumulation of Perfluoroalkyl Substances in Model Lipid Bilayers and Bacteria. Environmental Science & Technology, 2018, 52, 10433-10440.	4.6	74
8	The Impacts of Triclosan on Anaerobic Community Structures, Function, and Antimicrobial Resistance. Environmental Science & Technology, 2014, 48, 7393-7400.	4.6	67
9	Contaminants of Emerging Concern: Mass Balance and Comparison of Wastewater Effluent and Upstream Sources in a Mixed-Use Watershed. Environmental Science & Technology, 2016, 50, 36-45.	4.6	67
10	Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations. Water Research, 2007, 41, 1869-1876.	5.3	65
11	The role of biodegradation in limiting the accumulation of petroleum hydrocarbons in raingarden soils. Water Research, 2012, 46, 6753-6762.	5.3	65
12	The reductive dechlorination of 2,3,4,5-tetrachlorobiphenyl in three different sediment cultures: evidence for the involvement of phylogenetically similar Dehalococcoides-like bacterial populations. FEMS Microbiology Ecology, 2006, 55, 248-261.	1.3	64
13	Considerations for reducing food system energy demand while scaling up urban agriculture. Environmental Research Letters, 2017, 12, 125004.	2.2	63
14	Fate of Naphthalene in Laboratory-Scale Bioretention Cells: Implications for Sustainable Stormwater Management. Environmental Science & Technology, 2012, 46, 995-1002.	4.6	58
15	Impact of Organic Carbon on the Biodegradation of Estrone in Mixed Culture Systems. Environmental Science & Technology, 2013, 47, 12359-12365.	4.6	38
16	Phytoestrogens in the environment, I: Occurrence and exposure effects on fathead minnows. Environmental Toxicology and Chemistry, 2014, 33, 553-559.	2.2	38
17	Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source. Water Research, 2005, 39, 569-578.	5.3	35
18	Quantification of Phytoestrogens in Industrial Waste Streams. Environmental Toxicology and Chemistry, 2009, 28, 2318-2323.	2.2	35

#	Article	IF	CITATIONS
19	Perfluoroalkyl Substances Increase the Membrane Permeability and Quorum Sensing Response in <i>Aliivibrio fischeri</i> . Environmental Science and Technology Letters, 2018, 5, 26-31.	3.9	34
20	Effects of Ethanol-Based Fuel Contamination: Microbial Community Changes, Production of Regulated Compounds, and Methane Generation. Environmental Science & Technology, 2010, 44, 4525-4530.	4.6	33
21	The effect of thermal hydrolysis pretreatment on the anaerobic degradation of nonylphenol and short-chain nonylphenol ethoxylates in digested biosolids. Water Research, 2012, 46, 2937-2946.	5.3	32
22	Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA. Applied and Environmental Microbiology, 2017, 83, .	1.4	32
23	Enhancing polychlorinated biphenyl dechlorination in fresh water sediment with biostimulation and bioaugmentation. Chemosphere, 2008, 71, 176-182.	4.2	31
24	Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis. Environmental Sciences: Processes and Impacts, 2014, 16, 2390-2399.	1.7	31
25	Removal of chlorinated organic compounds during wastewater treatment: achievements and limits. Applied Microbiology and Biotechnology, 2014, 98, 6233-6242.	1.7	31
26	On the Need for a National (U.S.) Research Program to Elucidate the Potential Risks to Human Health and the Environment Posed by Contaminants of Emerging Concern. Environmental Science & Technology, 2011, 45, 3829-3830.	4.6	28
27	Abundance and diversity of organohalide-respiring bacteria in lake sediments across a geographical sulfur gradient. FEMS Microbiology Ecology, 2013, 84, 248-258.	1.3	28
28	Estrone Degradation: Does Organic Matter (Quality), Matter?. Environmental Science & Technology, 2015, 49, 498-503.	4.6	26
29	Dissolved oxygen concentrations affect the function but not the relative abundance of nitrifying bacterial populations in full-scale municipal wastewater treatment bioreactors during cold weather. Science of the Total Environment, 2021, 781, 146719.	3.9	26
30	The effect of varying levels of sodium bicarbonate on polychlorinated biphenyl dechlorination in Hudson River sediment cultures. Environmental Microbiology, 2006, 8, 1288-1298.	1.8	25
31	Novel Firmicutes Group Implicated in the Dechlorination of Two Chlorinated Xanthones, Analogues of Natural Organochlorines. Applied and Environmental Microbiology, 2014, 80, 1210-1218.	1.4	22
32	Photodegradation of pharmaceutical compounds in partially nitritated wastewater during UV irradiation. Environmental Science: Water Research and Technology, 2019, 5, 897-909.	1.2	21
33	Presence, Diversity, and Enrichment of Respiratory Reductive Dehalogenase and Non-respiratory Hydrolytic and Oxidative Dehalogenase Genes in Terrestrial Environments. Frontiers in Microbiology, 2019, 10, 1258.	1.5	20
34	Investigation of cell exudates active in carbon tetrachloride and chloroform degradation. Biotechnology and Bioengineering, 2001, 74, 12-17.	1.7	19
35	A comparison of total maximum daily load (TMDL) calculations in urban streams using near real-time and periodic sampling data. Journal of Environmental Monitoring, 2010, 12, 234-241.	2.1	19
36	Correlations between in situ sensor measurements and trace organic pollutants in urban streams. Journal of Environmental Monitoring, 2010, 12, 225-233.	2.1	18

#	Article	IF	CITATIONS
37	Kinetics of alachlor transformation and identification of metabolites under anaerobic conditions. Water Research, 1997, 31, 3107-3115.	5.3	16
38	Comparison of pulsed and continuous addition of H2 gas via membranes for stimulating PCE biodegradation in soil columns. Water Research, 2006, 40, 1155-1166.	5.3	15
39	Zone of influence of a gas permeable membrane system for delivery of gases to groundwater. Water Resources Research, 2005, 41, .	1.7	14
40	Stimulating In Situ Hydrogenotrophic Denitrification with Membrane-Delivered Hydrogen under Passive and Pumped Groundwater Conditions. Journal of Environmental Engineering, ASCE, 2009, 135, 666-676.	0.7	14
41	Effects of various environmental conditions on the transformation of chlorinated solvents byMethanosarcina thermophila cell exudates. Biotechnology and Bioengineering, 2001, 75, 634-641.	1.7	13
42	Novel application of oxygen-transferring membranes to improve anaerobic wastewater treatment. Biotechnology and Bioengineering, 2005, 89, 373-380.	1.7	13
43	The Impact of Sediment Characteristics on Polychlorinated Biphenyl–Dechlorinating Cultures: Implications for Bioaugmentation. Bioremediation Journal, 2006, 10, 143-151.	1.0	11
44	Discovering Flow Anomalies: A SWEET Approach. , 2008, , .		11
45	Achieving high-rate hydrogen recovery from wastewater using customizable alginate polymer gel matrices encapsulating biomass. Environmental Science: Water Research and Technology, 2018, 4, 1867-1876.	1.2	11
46	Aqueous film forming foam and associated perfluoroalkyl substances inhibit methane production and Co-contaminant degradation in an anaerobic microbial community. Environmental Sciences: Processes and Impacts, 2019, 21, 1915-1925.	1.7	11
47	Enhanced Nitrogen Removal and Anammox Bacteria Retention with Zeolite-Coated Membrane in Simulated Mainstream Wastewater. Environmental Science and Technology Letters, 2021, 8, 468-473.	3.9	11
48	Encapsulating microorganisms to enhance biological nitrogen removal in wastewater: recent advancements and future opportunities. Environmental Science: Water Research and Technology, 2021, 7, 1402-1416.	1.2	10
49	Contaminants of Emerging Concern in the Lower Volta River, Ghana, West Africa: The Agriculture, Aquaculture, and Urban Development Nexus. Environmental Toxicology and Chemistry, 2022, 41, 369-381.	2.2	9
50	Performance of a composite bioactive membrane for H ₂ production and capture from high strength wastewater. Environmental Science: Water Research and Technology, 2016, 2, 848-857.	1.2	8
51	Effects of encapsulation on the chemical inhibition of anaerobic hydrogen- and methane-producing microbial cells. Bioresource Technology Reports, 2020, 11, 100451.	1.5	8
52	Phytoestrogens in the environment, II: Microbiological degradation of phytoestrogens and the response of fathead minnows to degradate exposure. Environmental Toxicology and Chemistry, 2014, 33, 560-566.	2.2	6
53	Estrone biodegradation in laboratory-scale systems designed for total nitrogen removal from wastewater. Environmental Science: Water Research and Technology, 2017, 3, 1051-1060.	1.2	6
54	Encapsulation technology to improve biological resource recovery: recent advancements and research opportunities. Environmental Science: Water Research and Technology, 2021, 7, 16-23.	1.2	6

#	Article	IF	CITATIONS
55	Innovation Promoted by Regulatory Flexibility. Environmental Science & Technology, 2015, 49, 13908-13909.	4.6	5
56	Modeling alginate encapsulation system for biological hydrogen production. Biotechnology and Bioengineering, 2019, 116, 3189-3199.	1.7	4
57	Porous Polyethylene-Supported Zeolite Carriers for Improved Wastewater Deammonification. ACS ES&T Engineering, 2021, 1, 1104-1112.	3.7	4
58	Encapsulation technology for decentralized brewery wastewater treatment: A small pilot experiment. Bioresource Technology, 2022, 347, 126435.	4.8	4
59	Structure and Function of Assemblages of <i>Bacteria</i> and <i>Archaea</i> in Model Anaerobic Aquifer Columns: Can Functional Instability Be Practically Beneficial?. Environmental Science & Technology, 2012, 46, 10137-10144.	4.6	3
60	The Effect of Perfluorooctane Sulfonate, Exposure Time, and Chemical Mixtures on Methanogenic Community Structure and Function. Microbiology Insights, 2015, 8s2, MBI.S31345.	0.9	3
61	The potential for bacteria from carbon-limited deep terrestrial environments to participate in chlorine cycling. FEMS Microbiology Ecology, 2022, 98, .	1.3	3
62	Geomembranes Containing Powdered Activated Carbon Have the Potential to Improve Containment of Chlorinated Aromatic Contaminants. Environmental Science & Technology, 2009, 43, 8916-8922.	4.6	2
63	Effects of estrone and organic carbon exposure on the transformation of estrone. Environmental Science: Water Research and Technology, 2015, 1, 457-464.	1.2	2
64	Rapid Enrichment of Dehalococcoides-Like Bacteria by Partial Hydrophobic Separation. Applied and Environmental Microbiology, 2017, 83, .	1.4	2
65	Offering authors a choice: introduction of optional double-blind peer review. Environmental Science: Nano, 2020, 7, 11-12.	2.2	2
66	Unraveling encapsulated growth of Nitrosomonas europaea in alginate: An experimental and modeling study. Water Research, 2022, 208, 117857.	5.3	2
67	2019 Best Papers published in the Environmental Science journals of the Royal Society of Chemistry. Environmental Sciences: Processes and Impacts, 2020, 22, 860-862.	1.7	1
68	Anaerobic technology. Environmental Science: Water Research and Technology, 2018, 4, 1720-1720.	1.2	0
69	A journal with real impact: responsive, reliable, and thought-provoking. Environmental Science: Water Research and Technology, 2019, 5, 9-10.	1.2	0
70	Best Papers from 2018 in the <i>Environmental Science</i> family of journals: great science with a global reach. Environmental Sciences: Processes and Impacts, 2019, 21, 603-604.	1.7	0
71	Best Papers from 2018 in the Environmental Science family of journals: great science with a global reach. Environmental Science: Water Research and Technology, 2019, 5, 629-630.	1.2	0
72	Best Papers from 2018 in the Environmental Science family of journals: great science with a global reach. Environmental Science: Nano, 2019, 6, 1004-1005.	2.2	0

#	Article	IF	CITATIONS
73	Offering authors a choice: introduction of optional double-blind peer review. Environmental Sciences: Processes and Impacts, 2020, 22, 10-11.	1.7	0
74	Offering authors a choice: introduction of optional double-blind peer review. Environmental Science: Water Research and Technology, 2020, 6, 10-11.	1.2	0
75	Diverse dechlorinators and dechlorination genes enriched through amendment of chlorinated natural organic matter fractions. Environmental Sciences: Processes and Impacts, 2020, 22, 595-605.	1.7	0
76	2019 Best Papers published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Nano, 2020, 7, 1630-1632.	2.2	0
77	2019 Best Papers published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Water Research and Technology, 2020, 6, 1210-1212.	1.2	0
78	Best Papers from 2020 published in the Environmental Science journals of the Royal Society of Chemistry. Environmental Science: Nano, 2021, 8, 2411-2413.	2.2	0
79	Best papers from 2020 published in the Environmental Science journals of the Royal Society of Chemistry. Environmental Sciences: Processes and Impacts, 2021, 23, 1252-1254.	1.7	0
80	Best Papers from 2020 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Water Research and Technology, 2021, 7, 1542-1544.	1.2	0
81	Performance of a composite bioactive membrane for enhanced BioH2 production and capture from wastewater. Proceedings of the Water Environment Federation, 2015, 2015, 4412-4412.	0.0	0
82	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science Atmospheres, 0, , .	0.9	0
83	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Nano, 0, , .	2.2	0
84	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Water Research and Technology, 0, , .	1.2	0
85	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Sciences: Processes and Impacts, 2022, 24, 848-850.	1.7	0