Matthew C Kiernan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1942385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amyotrophic lateral sclerosis. Lancet, The, 2011, 377, 942-955.	6.3	2,182
2	Chemotherapyâ€induced peripheral neurotoxicity: A critical analysis. Ca-A Cancer Journal for Clinicians, 2013, 63, 419-437.	157.7	547
3	Clinical diagnosis and management of amyotrophic lateral sclerosis. Nature Reviews Neurology, 2011, 7, 639-649.	4.9	503
4	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	9.4	494
5	Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurology, The, 2013, 12, 310-322.	4.9	454
6	Multiple measures of axonal excitability: A new approach in clinical testing. Muscle and Nerve, 2000, 23, 399-409.	1.0	412
7	Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain, 2008, 131, 1540-1550.	3.7	391
8	Biomarkers in amyotrophic lateral sclerosis. Lancet Neurology, The, 2009, 8, 94-109.	4.9	391
9	Excitability of human axons. Clinical Neurophysiology, 2001, 112, 1575-1585.	0.7	384
10	Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 973-985.	0.9	320
11	Strength-duration properties of human peripheral nerve. Brain, 1996, 119, 439-447.	3.7	316
12	Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurology, The, 2016, 15, 1182-1194.	4.9	301
13	The frontotemporal dementia-motor neuron disease continuum. Lancet, The, 2016, 388, 919-931.	6.3	294
14	Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain, 2006, 129, 2436-2446.	3.7	284
15	Motor Neuron dysfunction in frontotemporal dementia. Brain, 2011, 134, 2582-2594.	3.7	271
16	A proposal for new diagnostic criteria for ALS. Clinical Neurophysiology, 2020, 131, 1975-1978.	0.7	268
17	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	9.4	223
18	Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1161-1170.	0.9	213

#	Article	IF	CITATIONS
19	FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 639-645.	0.9	205
20	Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain, 2009, 132, 2712-2723.	3.7	198
21	Oxaliplatin-induced neurotoxicity and the development of neuropathy. Muscle and Nerve, 2005, 32, 51-60.	1.0	194
22	Activity-dependent hyperpolarization of human motor axons produced by natural activity. Journal of Physiology, 1998, 507, 919-925.	1.3	191
23	Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends in Neurosciences, 2014, 37, 433-442.	4.2	186
24	Axonal excitability properties in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2006, 117, 1458-1466.	0.7	177
25	TDP-43 proteinopathies: a new wave of neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 86-95.	0.9	174
26	Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. International Journal of Molecular Sciences, 2019, 20, 3161.	1.8	173
27	Long-Term Neuropathy After Oxaliplatin Treatment: Challenging the Dictum of Reversibility. Oncologist, 2011, 16, 708-716.	1.9	171
28	Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. Journal of Electromyography and Kinesiology, 2020, 53, 102438.	0.7	170
29	Evidence for axonal membrane hyperpolarization in multifocal motor neuropathy with conduction block. Brain, 2002, 125, 664-675.	3.7	169
30	Grey and White Matter Changes across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia Continuum. PLoS ONE, 2012, 7, e43993.	1.1	168
31	How common are behavioural changes in amyotrophic lateral sclerosis?. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 45-51.	2.3	165
32	Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nature Reviews Neurology, 2016, 12, 651-661.	4.9	165
33	Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurology, The, 2015, 14, 478-484.	4.9	164
34	Assessment of cortical excitability using threshold tracking techniques. Muscle and Nerve, 2006, 33, 477-486.	1.0	162
35	Acute tetrodotoxin-induced neurotoxicity after ingestion of puffer fish. Annals of Neurology, 2005, 57, 339-348.	2.8	159
36	Neuroinflammation in frontotemporal dementia. Nature Reviews Neurology, 2019, 15, 540-555.	4.9	159

#	Article	IF	CITATIONS
37	Emerging therapies and challenges in spinal muscular atrophy. Annals of Neurology, 2017, 81, 355-368.	2.8	157
38	Acute Abnormalities of Sensory Nerve Function Associated With Oxaliplatin-Induced Neurotoxicity. Journal of Clinical Oncology, 2009, 27, 1243-1249.	0.8	153
39	Cortical influences drive amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 917-924.	0.9	152
40	Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nature Reviews Neurology, 2021, 17, 104-118.	4.9	152
41	Kidney–brain crosstalk in the acute and chronic setting. Nature Reviews Nephrology, 2015, 11, 707-719.	4.1	151
42	Axonal ion channels from bench to bedside: A translational neuroscience perspective. Progress in Neurobiology, 2009, 89, 288-313.	2.8	144
43	Frontotemporal Dementia Associated With the <i>C9ORF72</i> Mutation. JAMA Neurology, 2014, 71, 331.	4.5	144
44	Clinical evaluation of excitability measures in sensory nerve. Muscle and Nerve, 2001, 24, 883-892.	1.0	141
45	Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clinical Neurophysiology, 2015, 126, 803-809.	0.7	140
46	Quantifying disease progression in amyotrophic lateral sclerosis. Annals of Neurology, 2014, 76, 643-657.	2.8	133
47	Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurology, The, 2022, 21, 465-479.	4.9	130
48	Differences in activity-dependent hyperpolarization in human sensory and motor axons. Journal of Physiology, 2004, 558, 341-349.	1.3	129
49	Amyotrophic lateral sclerosis and frontotemporal dementia: A behavioural and cognitive continuum. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 102-109.	2.3	124
50	Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurology, The, 2022, 21, 480-493.	4.9	124
51	Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. Brain, 2013, 136, 1361-1370.	3.7	123
52	Nerve excitability changes in chronic renal failure indicate membrane depolarization due to hyperkalaemia. Brain, 2002, 125, 1366-1378.	3.7	122
53	Cortical excitability distinguishes ALS from mimic disorders. Clinical Neurophysiology, 2011, 122, 1860-1866.	0.7	122
54	Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis?. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 245-250.	2.3	121

#	Article	IF	CITATIONS
55	Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurology, The, 2016, 15, 332-342.	4.9	120
56	Primary lateral sclerosis: consensus diagnostic criteria. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 373-377.	0.9	118
57	Altered nerve excitability properties in established diabetic neuropathy. Brain, 2005, 128, 1178-1187.	3.7	114
58	Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain, 2018, 141, 521-534.	3.7	114
59	The Puzzling Case of Hyperexcitability in Amyotrophic Lateral Sclerosis. Journal of Clinical Neurology		

#	Article	IF	CITATIONS
73	Impact of oxaliplatin-induced neuropathy: a patient perspective. Supportive Care in Cancer, 2012, 20, 2959-2967.	1.0	93
74	Differentiating lower motor neuron syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 474-483.	0.9	93
75	Pathophysiological insights into ALS with C9ORF72 expansions. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 931-935.	0.9	89
76	Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease. Neurotherapeutics, 2017, 14, 91-106.	2.1	89
77	Activity-dependent excitability changes suggest Na+/K+ pump dysfunction in diabetic neuropathy. Brain, 2008, 131, 1209-1216.	3.7	87
78	Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2016, 127, 2643-2660.	0.7	87
79	Upregulation of persistent sodium conductances in familial ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 222-227.	0.9	86
80	Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clinical Neurophysiology, 2021, 132, 2568-2607.	0.7	85
81	Oxaliplatin and Axonal Na+ Channel Function In vivo. Clinical Cancer Research, 2006, 12, 4481-4484.	3.2	82
82	Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum. PLoS ONE, 2014, 9, e105632.	1.1	79
83	Effect of Ezogabine on Cortical and Spinal Motor Neuron Excitability in Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 186.	4.5	79
84	Motor cortical function determines prognosis in sporadic ALS. Neurology, 2016, 87, 513-520.	1.5	76
85	Fasciculation in amyotrophic lateral sclerosis: origin and pathophysiological relevance. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 773-779.	0.9	76
86	Nerve function and dysfunction in acute intermittent porphyria. Brain, 2008, 131, 2510-2519.	3.7	75
87	Cortical Dysfunction Underlies the Development of the Split-Hand in Amyotrophic Lateral Sclerosis. PLoS ONE, 2014, 9, e87124.	1.1	75
88	Psychiatric disorders in <i>C9orf72</i> kindreds. Neurology, 2018, 91, e1498-e1507.	1.5	75
89	Assessment of disease progression in motor neuron disease. Lancet Neurology, The, 2005, 4, 229-238.	4.9	74
90	Cortical excitability testing distinguishes Kennedy's disease from amyotrophic lateral sclerosis. Clinical Neurophysiology, 2008, 119, 1088-1096.	0.7	74

#	Article	IF	CITATIONS
91	Cortical Function in Asymptomatic Carriers and Patients With <i>C9orf72</i> Amyotrophic Lateral Sclerosis. JAMA Neurology, 2015, 72, 1268.	4.5	74
92	Awaji criteria improves the diagnostic sensitivity in amyotrophic lateral sclerosis: A systematic review using individual patient data. Clinical Neurophysiology, 2016, 127, 2684-2691.	0.7	74
93	Assessment of Eating Behavior Disturbance and Associated Neural Networks in Frontotemporal Dementia. JAMA Neurology, 2016, 73, 282.	4.5	74
94	Chemotherapy-Induced Peripheral Neuropathy in Long-term Survivors of Childhood Cancer. JAMA Neurology, 2018, 75, 980.	4.5	73
95	Eating behavior in frontotemporal dementia. Neurology, 2015, 85, 1310-1317.	1.5	72
96	Physiological changes in neurodegeneration — mechanistic insights and clinical utility. Nature Reviews Neurology, 2018, 14, 259-271.	4.9	72
97	Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Experimental Neurology, 2009, 220, 177-182.	2.0	71
98	Conduction block in carpal tunnel syndrome. Brain, 1999, 122, 933-941.	3.7	69
99	Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxelâ€induced neuropathy. Muscle and Nerve, 2011, 43, 367-374.	1.0	69
100	Diagnostic Utility of Gold Coast Criteria in <scp>Amyotrophic Lateral Sclerosis</scp> . Annals of Neurology, 2021, 89, 979-986.	2.8	68
101	The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Brain Research, 2009, 1273, 39-47.	1.1	67
102	Imbalance of cortical facilitatory and inhibitory circuits underlies hyperexcitability in ALS. Neurology, 2018, 91, e1669-e1676.	1.5	67
103	Temperature dependence of excitability indices of human cutaneous afferents. , 1999, 22, 51-60.		66
104	Sleep disorders and respiratory function in amyotrophic lateral sclerosis. Sleep Medicine Reviews, 2016, 26, 33-42.	3.8	65
105	Modulatory Effects on Axonal Function After Intravenous Immunoglobulin Therapy in Chronic Inflammatory Demyelinating Polyneuropathy. Archives of Neurology, 2011, 68, 862.	4.9	63
106	Guillain-Barre syndrome in Asia. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 907-913.	0.9	63
107	Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 595-604.	1.1	63
108	Measurement of axonal excitability: Consensus guidelines. Clinical Neurophysiology, 2020, 131, 308-323.	0.7	63

#	Article	IF	CITATIONS
109	Safety and efficacy of ozanezumab in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2017, 16, 208-216.	4.9	62
110	The neural correlates and clinical characteristics of psychosis in the frontotemporal dementia continuum and the C9orf72 expansion. NeuroImage: Clinical, 2017, 13, 439-445.	1.4	60
111	Optimal clinical assessment strategies for chemotherapy-induced peripheral neuropathy (CIPN): a systematic review and Delphi survey. Supportive Care in Cancer, 2017, 25, 3485-3493.	1.0	59
112	Riluzole exerts transient modulating effects on cortical and axonal hyperexcitability in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 580-588.	1.1	58
113	Mutation in the Na+ channel subunit SCN1B produces paradoxical changes in peripheral nerve excitability. Brain, 2005, 128, 1841-1846.	3.7	54
114	Fatigue and activity dependent changes in axonal excitability in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1202-1208.	0.9	54
115	A novel tool to detect behavioural symptoms in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 298-304.	1.1	53
116	Randomized, Controlled Trial of the Effect of Dietary Potassium Restriction on Nerve Function in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1569-1577.	2.2	53
117	Isolated bulbar phenotype of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 283-289.	2.3	52
118	What are the roles of carers in decision-making for amyotrophic lateral sclerosis multidisciplinary care?. Patient Preference and Adherence, 2013, 7, 171.	0.8	52
119	Utility of threshold tracking transcranial magnetic stimulation in ALS. Clinical Neurophysiology Practice, 2018, 3, 164-172.	0.6	51
120	Neurophysiological and clinical outcomes in chemotherapy-induced neuropathy in cancer. Clinical Neurophysiology, 2017, 128, 1166-1175.	0.7	50
121	Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 481-487.	1.1	48
122	Systemic metabolism in frontotemporal dementia. Neurology, 2014, 83, 1812-1818.	1.5	48
123	Motor neuron disease-frontotemporal dementia: a clinical continuum. Expert Review of Neurotherapeutics, 2015, 15, 509-522.	1.4	48
124	Multifocal motor neuropathy: controversies and priorities. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 140-148.	0.9	48
125	The impact of cognitive and behavioral impairment in amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 2020, 20, 281-293.	1.4	48
126	Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. Journal of Medical Genetics, 2021, 58, 87-95.	1.5	48

#	Article	IF	CITATIONS
127	Neurophysiological index as a biomarker for ALS progression: Validity of mixed effects models. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 33-38.	2.3	47
128	FOSMN syndrome. Neurology, 2012, 79, 73-79.	1.5	47
129	Dissociated lower limb muscle involvement in amyotrophic lateral sclerosis. Journal of Neurology, 2015, 262, 1424-1432.	1.8	47
130	Lipid Metabolism and Survival Across the Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Spectrum: Relationships to Eating Behavior and Cognition. Journal of Alzheimer's Disease, 2017, 61, 773-783.	1.2	47
131	Split-hand plus sign in ALS: Differential involvement of the flexor pollicis longus and intrinsic hand muscles. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 315-318.	1.1	46
132	Evidence for a causal relationship between hyperkalaemia and axonal dysfunction in end-stage kidney disease. Clinical Neurophysiology, 2014, 125, 179-185.	0.7	46
133	Diagnostic criteria in amyotrophic lateral sclerosis. Neurology, 2016, 87, 684-690.	1.5	46
134	Measuring network disruption in neurodegenerative diseases: New approaches using signal analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1011-1020.	0.9	45
135	Cortical hyperexcitability evolves with disease progression in ALS. Annals of Clinical and Translational Neurology, 2020, 7, 733-741.	1.7	45
136	ALS pathophysiology: Insights from the split-hand phenomenon. Clinical Neurophysiology, 2014, 125, 186-193.	0.7	44
137	Emotion processing deficits distinguish pure amyotrophic lateral sclerosis from frontotemporal dementia. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 39-46.	1.1	44
138	Nerve excitability properties in lower-limb motor axons: Evidence for a length-dependent gradient. Muscle and Nerve, 2004, 29, 645-655.	1.0	43
139	Energy expenditure in frontotemporal dementia: a behavioural and imaging study. Brain, 2017, 140, 171-183.	3.7	43
140	Axonal Excitability in Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2017, 14, 78-90.	2.1	43
141	Association of Leucine-Rich Glioma Inactivated Protein 1, Contactin-Associated Protein 2, and Contactin 2 Antibodies With Clinical Features and Patient-Reported Pain in Acquired Neuromyotonia. JAMA Neurology, 2018, 75, 1519.	4.5	43
142	Progressive axonal dysfunction and clinical impairment in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2012, 123, 2460-2467.	0.7	42
143	Quantitative ultrasound of denervated hand muscles. Muscle and Nerve, 2015, 52, 221-230.	1.0	42
144	A Phase 2, Double-Blind, Randomized, Dose-Ranging Trial Of <i>Reldesemtiv</i> In Patients With ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 287-299.	1.1	42

#	Article	IF	CITATIONS
145	Purple pigments: The pathophysiology of acute porphyric neuropathy. Clinical Neurophysiology, 2011, 122, 2336-2344.	0.7	40
146	Advance care planning in motor neuron disease: A qualitative study of caregiver perspectives. Palliative Medicine, 2016, 30, 471-478.	1.3	40
147	Eating peptides: biomarkers of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia. Annals of Clinical and Translational Neurology, 2019, 6, 486-495.	1.7	40
148	Regional thalamic MRI as a marker of widespread cortical pathology and progressive frontotemporal involvement in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1250-1258.	0.9	39
149	ALS is a multistep process in South Korean, Japanese, and Australian patients. Neurology, 2020, 94, e1657-e1663.	1.5	39
150	Neuropathy, axonal Na+/K+ pump function and activity-dependent excitability changes in end-stage kidney disease. Clinical Neurophysiology, 2006, 117, 992-999.	0.7	38
151	The Pathophysiology of Oxaliplatin-Induced Neurotoxicity. Current Medicinal Chemistry, 2006, 13, 2901-2907.	1.2	38
152	Semantic deficits in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 46-53.	1.1	38
153	Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.	5.8	38
154	Neurofascinâ€155 IGG4 Neuropathy: Pathophysiological Insights, Spectrum of Clinical Severity and Response To treatment. Muscle and Nerve, 2018, 57, 848-851.	1.0	37
155	Adaptation of motor function after spinal cord injury: novel insights into spinal shock. Brain, 2011, 134, 495-505.	3.7	36
156	Dysfunction of axonal membrane conductances in adolescents and young adults with spinal muscular atrophy. Brain, 2011, 134, 3185-3197.	3.7	35
157	Early identification of 'acute-onset' chronic inflammatory demyelinating polyneuropathy. Brain, 2014, 137, 2155-2163.	3.7	35
158	Axonal Ion Channel Dysfunction in <i>C9orf72</i> Familial Amyotrophic Lateral Sclerosis. JAMA Neurology, 2015, 72, 49.	4.5	35
159	Primary lateral sclerosis and the amyotrophic lateral sclerosis–frontotemporal dementia spectrum. Journal of Neurology, 2018, 265, 1819-1828.	1.8	35
160	Novel approaches to diagnosis and management of hereditary transthyretin amyloidosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 668-678.	0.9	35
161	Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 561-575.	1.0	34
162	The evolution of motor cortical dysfunction in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2017, 128, 1075-1082.	0.7	34

#	Article	IF	CITATIONS
163	Inter-session reliability of short-interval intracortical inhibition measured by threshold tracking TMS. Neuroscience Letters, 2018, 674, 18-23.	1.0	34
164	Threshold tracking transcranial magnetic stimulation: Effects of age and gender on motor cortical function. Clinical Neurophysiology, 2016, 127, 2355-2361.	0.7	33
165	Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression. BMJ Open, 2021, 11, e041479.	0.8	33
166	Changes in excitability and impulse transmission following prolonged repetitive activity in normal subjects and patients with a focal nerve lesion. Brain, 1996, 119, 2029-2037.	3.7	32
167	Patterns of clinical and electrodiagnostic abnormalities in early amyotrophic lateral sclerosis. Muscle and Nerve, 2014, 50, 894-899.	1.0	32
168	Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 85-92.	1.1	32
169	Health, wellbeing and lived experiences of adults with SMA: a scoping systematic review. Orphanet Journal of Rare Diseases, 2020, 15, 70.	1.2	32
170	Riluzole therapy for motor neurone disease: An early Australian experience (1996–2002). Journal of Clinical Neuroscience, 2006, 13, 78-83.	0.8	31
171	Development of a model to guide decision making in amyotrophic lateral sclerosis multidisciplinary care. Health Expectations, 2015, 18, 1769-1782.	1.1	31
172	Physiological Processes Underlying Short Interval Intracortical Facilitation in the Human Motor Cortex. Frontiers in Neuroscience, 2018, 12, 240.	1.4	31
173	Loss of the metabolism and sleep regulating neuronal populations expressing orexin and oxytocin in the hypothalamus in amyotrophic lateral sclerosis. Neuropathology and Applied Neurobiology, 2021, 47, 979-989.	1.8	31
174	Dissecting the Mechanisms Underlying Short-Interval Intracortical Inhibition Using Exercise. Cerebral Cortex, 2011, 21, 1639-1644.	1.6	30
175	Fasciculation anxiety syndrome in clinicians. Journal of Neurology, 2013, 260, 1743-1747.	1.8	30
176	Effects of Axonal Ion Channel Dysfunction on Quality of Life in Type 2 Diabetes. Diabetes Care, 2013, 36, 1272-1277.	4.3	30
177	Detection of fasciculations in amyotrophic lateral sclerosis: The optimal ultrasound scan time. Muscle and Nerve, 2017, 56, 1068-1071.	1.0	30
178	Amyotrophic lateral sclerosis: Origins traced to impaired balance between neural excitation and inhibition in the neonatal period. Muscle and Nerve, 2019, 60, 232-235.	1.0	30
179	Phenotypic variability in ALS-FTD and effect on survival. Neurology, 2020, 94, e2005-e2013.	1.5	30
180	Paraesthesiae Induced by Prolonged high Frequency Stimulation of Human Cutaneous Afferents. Journal of Physiology, 1997, 501, 461-471.	1.3	29

#	Article	IF	CITATIONS
181	Corticomotoneuronal function and hyperexcitability in acquired neuromyotonia. Brain, 2010, 133, 2727-2733.	3.7	29
182	Axonal dysfunction prior to neuropathy onset in type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2013, 29, 53-59.	1.7	29
183	Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with <scp>ATXN</scp> 2 intermediate repeat expansions. Annals of Neurology, 2016, 79, 295-305.	2.8	29
184	Interrogating cortical function with transcranial magnetic stimulation: insights from neurodegenerative disease and stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 47-57.	0.9	29
185	The underacknowledged PPA-ALS. Neurology, 2019, 92, e1354-e1366.	1.5	29
186	Consensus for experimental design in electromyography (CEDE) project: Terminology matrix. Journal of Electromyography and Kinesiology, 2021, 59, 102565.	0.7	29
187	Characterizing Sexual Behavior inÂFrontotemporal Dementia. Journal of Alzheimer's Disease, 2015, 46, 677-686.	1.2	28
188	Motor neurone disease: progress and challenges. Medical Journal of Australia, 2017, 206, 357-362.	0.8	28
189	Characteristics and risk factors of bortezomib induced peripheral neuropathy: A systematic review of phase III trials. Hematological Oncology, 2020, 38, 229-243.	0.8	28
190	Pathophysiologic insights into motor axonal function in Kennedy disease. Neurology, 2007, 69, 1828-1835.	1.5	27
191	Threshold behaviour of human axons explored using subthreshold perturbations to membrane potential. Journal of Physiology, 2009, 587, 491-504.	1.3	27
192	A visual MRI atrophy rating scale for the amyotrophic lateral sclerosis-frontotemporal dementia continuum. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 226-234.	1.1	27
193	Distinct TDP-43 inclusion morphologies in frontotemporal lobar degeneration with and without amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2017, 5, 76.	2.4	27
194	Comparison of crossâ€sectional areas and distalâ€proximal nerve ratios in amyotrophic lateral sclerosis. Muscle and Nerve, 2018, 58, 777-783.	1.0	27
195	Ischaemia induces paradoxical changes in axonal excitability in end-stage kidney disease. Brain, 2006, 129, 1585-1592.	3.7	26
196	Ischaemic sensitivity of axons in carpal tunnel syndrome. Journal of the Peripheral Nervous System, 2009, 14, 190-200.	1.4	26
197	Apraxia and Motor Dysfunction in Corticobasal Syndrome. PLoS ONE, 2014, 9, e92944.	1.1	26
198	A longer diagnostic interval is a risk for depression in amyotrophic lateral sclerosis. Palliative and Supportive Care, 2015, 13, 1019-1024.	0.6	26

#	Article	IF	CITATIONS
199	The Evolution of Caregiver Burden inÂFrontotemporal Dementia with and without Amyotrophic Lateral Sclerosis. Journal of Alzheimer's Disease, 2015, 49, 875-885.	1.2	26
200	Segmental motoneuronal dysfunction is a feature of amyotrophic lateral sclerosis. Clinical Neurophysiology, 2015, 126, 828-836.	0.7	26
201	Cerebellar tract alterations in PLS and ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 281-284.	1.1	26
202	Altered serum protein levels in frontotemporal dementia and amyotrophic lateral sclerosis indicate calcium and immunity dysregulation. Scientific Reports, 2020, 10, 13741.	1.6	26
203	Occasional essay: Upper motor neuron syndrome in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 227-234.	0.9	26
204	Plasticity of lower limb motor axons after cervical cord injury. Clinical Neurophysiology, 2009, 120, 204-209.	0.7	25
205	Flecainide in Amyotrophic Lateral Sclerosis as a Neuroprotective Strategy (FANS): A Randomized Placebo-Controlled Trial. EBioMedicine, 2015, 2, 1916-1922.	2.7	25
206	Motor unit remodelling in multifocal motor neuropathy: The importance of axonal loss. Clinical Neurophysiology, 2017, 128, 2022-2028.	0.7	25
207	Correlation between markers of peripheral nerve function and structure in type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2018, 34, e3028.	1.7	25
208	Nerve biopsy: Current indications and decision tools. Muscle and Nerve, 2021, 64, 125-139.	1.0	25
209	Evolution of peripheral nerve function in humans: novel insights from motor nerve excitability. Journal of Physiology, 2013, 591, 273-286.	1.3	24
210	Syntactic comprehension deficits across the FTD-ALS continuum. Neurobiology of Aging, 2016, 41, 11-18.	1.5	24
211	Utility of maximum perfusion intensity as an ultrasonographic marker of intraneural blood flow. Muscle and Nerve, 2017, 55, 77-83.	1.0	24
212	Structural and functional papez circuit integrity in amyotrophic lateral sclerosis. Brain Imaging and Behavior, 2018, 12, 1622-1630.	1.1	24
213	Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neuroscience Letters, 2021, 759, 136039.	1.0	24
214	Changes in human sensory axonal excitability induced by focal nerve compression. Journal of Physiology, 2010, 588, 1737-1745.	1.3	23
215	Maladaptation of cortical circuits underlies fatigue and weakness in ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 414-420.	2.3	23
216	Paclitaxel-induced neuropathy: potential association of MAPT and GSK3B genotypes. BMC Cancer, 2014, 14, 993.	1.1	23

#	Article	IF	CITATIONS
217	Terra incognita—cerebellar contributions to neuropsychiatric and cognitive dysfunction in behavioral variant frontotemporal dementia. Frontiers in Aging Neuroscience, 2015, 7, 121.	1.7	23
218	Short-term peripheral nerve stimulation ameliorates axonal dysfunction after spinal cord injury. Journal of Neurophysiology, 2015, 113, 3209-3218.	0.9	23
219	Cortical contributions to the flail leg syndrome: Pathophysiological insights. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 389-396.	1.1	23
220	Cognitive and Behavioral Symptoms in ALSFTD. Journal of Geriatric Psychiatry and Neurology, 2016, 29, 3-10.	1.2	23
221	Mouse models of frontotemporal dementia: A comparison of phenotypes with clinical symptomatology. Neuroscience and Biobehavioral Reviews, 2017, 74, 126-138.	2.9	23
222	Peripheral nerve diffusion tensor imaging as a measure of disease progression in ALS. Journal of Neurology, 2017, 264, 882-890.	1.8	23
223	Physiological processes influencing motor-evoked potential duration with voluntary contraction. Journal of Neurophysiology, 2017, 117, 1156-1162.	0.9	23
224	<i>In vivo</i> evidence for reduced ion channel expression in motor axons of patients with amyotrophic lateral sclerosis. Journal of Physiology, 2018, 596, 5379-5396.	1.3	23
225	Functional Biomarkers for Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2018, 9, 1141.	1.1	23
226	Cortical excitability differences in hand muscles follow a splitâ€hand pattern in healthy controls. Muscle and Nerve, 2014, 49, 836-844.	1.0	22
227	Axonal damage in central and peripheral nervous system inflammatory demyelinating diseases. Current Opinion in Neurology, 2016, 29, 213-221.	1.8	22
228	Motor cortical dysfunction develops in spinocerebellar ataxia type 3. Clinical Neurophysiology, 2016, 127, 3418-3424.	0.7	22
229	Novel therapies in development that inhibit motor neuron hyperexcitability in amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 2016, 16, 1147-1154.	1.4	22
230	Pathophysiology of motor dysfunction in a childhood motor neuron disease caused by mutations in the riboflavin transporter. Clinical Neurophysiology, 2016, 127, 911-918.	0.7	22
231	Amyotrophic lateral sclerosis as a multi-step process: an Australia population study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 532-537.	1.1	22
232	Quantification of Small Fiber Neuropathy in Chemotherapy-Treated Patients. Journal of Pain, 2020, 21, 44-58.	0.7	22
233	Early focality and spread of cortical dysfunction in amyotrophic lateral sclerosis: A regional study across the motor cortices. Clinical Neurophysiology, 2020, 131, 958-966.	0.7	22
234	Consensus for experimental design in electromyography (CEDE) project: High-density surface electromyography matrix. Journal of Electromyography and Kinesiology, 2022, 64, 102656.	0.7	22

#	Article	IF	CITATIONS
235	Hyperexcitability, persistent Na+ conductances and neurodegeneration in amyotrophic lateral sclerosis. Experimental Neurology, 2009, 218, 1-4.	2.0	21
236	Hyperexcitability and amyotrophic lateral sclerosis. Neurology, 2012, 78, 1544-1545.	1.5	21
237	Botulinum toxin modulates cortical maladaptation in postâ€stroke spasticity. Muscle and Nerve, 2013, 48, 93-99.	1.0	21
238	Chemotherapy and peripheral neuropathy. Neurological Sciences, 2021, 42, 4109-4121.	0.9	21
239	The importance of offering early genetic testing in everyone with amyotrophic lateral sclerosis. Brain, 2022, 145, 1207-1210.	3.7	21
240	What is impact?: Figure 1. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 1-2.	0.9	20
241	Progress towards therapy in motor neuron disease. Nature Reviews Neurology, 2018, 14, 65-66.	4.9	20
242	The burden of apathy for caregivers of patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 599-605.	1.1	20
243	Fasciculation intensity and disease progression in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2018, 129, 2149-2154.	0.7	20
244	Paradox of amyotrophic lateral sclerosis and energy metabolism. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1013-1014.	0.9	20
245	TDP-43 levels in the brain tissue of ALS cases with and without C9ORF72 or ATXN2 gene expansions. Neurology, 2019, 93, e1748-e1755.	1.5	20
246	Identity by descent analysis identifies founder events and links SOD1 familial and sporadic ALS cases. Npj Genomic Medicine, 2020, 5, 32.	1.7	20
247	Metabolic and lifestyle risk factors for chemotherapy-induced peripheral neuropathy in taxane and platinum-treated patients: a systematic review. Journal of Cancer Survivorship, 2023, 17, 222-236.	1.5	20
248	Regional motor cortex dysfunction in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 1373-1382.	1.7	19
249	Conduction block in immuneâ€mediated neuropathy: paranodopathy versus axonopathy. European Journal of Neurology, 2019, 26, 1121-1129.	1.7	19
250	Taxane-induced peripheral neuropathy: differences in patient report and objective assessment. Supportive Care in Cancer, 2020, 28, 4459-4466.	1.0	19
251	Utilizing natural activity to dissect the pathophysiology of acute oxaliplatin-induced neuropathy. Experimental Neurology, 2011, 227, 120-127.	2.0	18
252	In vivo loss of slow potassium channel activity in individuals with benign familial neonatal epilepsy in remission. Brain, 2012, 135, 3144-3152.	3.7	18

#	Article	IF	CITATIONS
253	Physiology and pathophysiology of myelinated nerve fibers. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 115, 43-53.	1.0	18
254	Effects of Hemodiafiltration and High Flux Hemodialysis on Nerve Excitability in End-Stage Kidney Disease. PLoS ONE, 2013, 8, e59055.	1.1	18
255	Safety and efficacy of dimethyl fumarate in ALS: randomised controlled study. Annals of Clinical and Translational Neurology, 2021, 8, 1991-1999.	1.7	18
256	Ischemic resistance of cutaneous afferents and motor axons in patients with amyotrophic lateral sclerosis. , 1998, 21, 1692-1700.		17
257	Nerve Excitability Measures: Biophysical Basis and Use in the Investigation of Peripheral Nerve Disease. , 2005, , 113-129.		17
258	Nerve compression, membrane excitability, and symptoms of carpal tunnel syndrome. Muscle and Nerve, 2011, 44, 402-409.	1.0	17
259	In vivo evidence of reduced nodal and paranodal conductances in type 1 diabetes. Clinical Neurophysiology, 2016, 127, 1700-1706.	0.7	17
260	The Effect of Diabetes on Cortical Function in Stroke: Implications for Poststroke Plasticity. Diabetes, 2017, 66, 1661-1670.	0.3	17
261	Amyotrophic lateral sclerosis diagnostic index. Neurology, 2019, 92, e536-e547.	1.5	17
262	The effect of coil type and limb dominance in the assessment of lower-limb motor cortex excitability using TMS. Neuroscience Letters, 2019, 699, 84-90.	1.0	17
263	Behavioural changes predict poorer survival in amyotrophic lateral sclerosis. Brain and Cognition, 2021, 150, 105710.	0.8	17
264	Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain, 2022, 145, 1598-1609.	3.7	17
265	Precise correlation between structural and electrophysiological disturbances in MADSAM neuropathy. Neuromuscular Disorders, 2015, 25, 904-907.	0.3	16
266	Immune dysregulation in patients with carpal tunnel syndrome. Scientific Reports, 2017, 7, 8218.	1.6	16
267	Aerobic exercise training may improve nerve function in type 2 diabetes and preâ€diabetes: A systematic review. Diabetes/Metabolism Research and Reviews, 2019, 35, e3099.	1.7	16
268	The impact of obesity on neuropathy outcomes for paclitaxel- and oxaliplatin-treated cancer survivors. Journal of Cancer Survivorship, 2022, 16, 223-232.	1.5	16
269	Gold Coast diagnostic criteria: Implications for <scp>ALS</scp> diagnosis and clinical trial enrollment. Muscle and Nerve, 2021, 64, 532-537.	1.0	16
270	Tackling clinical heterogeneity across the amyotrophic lateral sclerosis–frontotemporal dementia spectrum using a transdiagnostic approach. Brain Communications, 2021, 3, fcab257.	1.5	16

#	Article	IF	CITATIONS
271	Haemodialysis alters peripheral nerve morphology in end-stage kidney disease. Clinical Neurophysiology, 2017, 128, 281-286.	0.7	15
272	Ectopic impulse generation in peripheral nerve hyperexcitability syndromes and amyotrophic lateral sclerosis. Clinical Neurophysiology, 2018, 129, 974-980.	0.7	15
273	Anti-MAC neuropathy: Role of IgM antibodies, the paranodal junction and juxtaparanodal potassium channels. Clinical Neurophysiology, 2018, 129, 2162-2169.	0.7	15
274	Potassium control in chronic kidney disease: implications for neuromuscular function. Internal Medicine Journal, 2019, 49, 817-825.	0.5	15
275	Axonal dysfunction, dysmyelination, and conduction failure in hereditary neuropathy with liability to pressure palsies. Muscle and Nerve, 2014, 49, 858-865.	1.0	14
276	Axonal dysfunction with voltage gated potassium channel complex antibodies. Experimental Neurology, 2014, 261, 337-342.	2.0	14
277	Continuous subcutaneous insulin infusion preserves axonal function in type 1 diabetes mellitus. Diabetes/Metabolism Research and Reviews, 2015, 31, 175-182.	1.7	14
278	The utility of the Total Neuropathy Score as an instrument to assess neuropathy severity in chronic kidney disease: A validation study. Clinical Neurophysiology, 2018, 129, 889-894.	0.7	14
279	Neural correlates of changes in sexual function in frontotemporal dementia: implications for reward and physiological functioning. Journal of Neurology, 2018, 265, 2562-2572.	1.8	14
280	Cortical excitability varies across different muscles. Journal of Neurophysiology, 2018, 120, 1397-1403.	0.9	14
281	Clinical and neuroimaging investigations of language disturbance in frontotemporal dementia–motor neuron disease patients. Journal of Neurology, 2019, 266, 921-933.	1.8	14
282	Electrophysiological and phenotypic profiles of taxane-induced neuropathy. Clinical Neurophysiology, 2020, 131, 1979-1985.	0.7	14
283	Pathological manifestation of human endogenous retrovirus K in frontotemporal dementia. Communications Medicine, 2021, 1, .	1.9	14
284	Excitability differences in lower-limb motor axons during and after ischemia. Muscle and Nerve, 2005, 31, 205-213.	1.0	13
285	Chapter 17 Assessment of nerve excitability properties in peripheral nerve disease. Handbook of Clinical Neurophysiology, 2006, 7, 381-403.	0.0	13
286	Corticospinal tract dysfunction and development of amyotrophic lateral sclerosis following electrical injury. Muscle and Nerve, 2010, 42, 288-292.	1.0	13
287	Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?. Clinical Neurophysiology, 2015, 126, 1288-1294.	0.7	13
288	Dynamic muscle ultrasound identifies upper motor neuron involvement in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 404-410.	1.1	13

#	Article	IF	CITATIONS
289	Tracking small sensory nerve action potentials in human axonal excitability studies. Journal of Neuroscience Methods, 2018, 298, 45-53.	1.3	13
290	Relative contributions of diabetes and chronic kidney disease to neuropathy development in diabetic nephropathy patients. Clinical Neurophysiology, 2019, 130, 2088-2095.	0.7	13
291	Vasculitic neuropathy: Comparison of clinical predictors with histopathological outcome. Muscle and Nerve, 2019, 59, 643-649.	1.0	13
292	Isaacs syndrome: the frontier of neurology, psychiatry, immunology and cancer. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1243-1244.	0.9	13
293	Regional callosal integrity and bilaterality of limb weakness in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 396-402.	1.1	13
294	Pathophysiology and Treatment of Non-motor Dysfunction in Amyotrophic Lateral Sclerosis. CNS Drugs, 2021, 35, 483-505.	2.7	13
295	Effects of mexiletine on hyperexcitability in sporadic amyotrophic lateral sclerosis: Preliminary findings from a small phase II randomized controlled trial. Muscle and Nerve, 2021, 63, 371-383.	1.0	13
296	Predicting a Positive Response to Intravenous Immunoglobulin in Isolated Lower Motor Neuron Syndromes. PLoS ONE, 2011, 6, e27041.	1.1	13
297	Appearance, phenomenology and diagnostic utility of the split hand in amyotrophic lateral sclerosis. Neurodegenerative Disease Management, 2011, 1, 457-462.	1.2	12
298	Implications of structural and functional brain changes in amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 2018, 18, 407-419.	1.4	12
299	Respiratory function and cognitive profile in amyotrophic lateral sclerosis. European Journal of Neurology, 2020, 27, 685-691.	1.7	12
300	Spinal muscular atrophy — the dawning of a new era. Nature Reviews Neurology, 2020, 16, 593-594.	4.9	12
301	Interrogating interneurone function using threshold tracking of the H reflex in healthy subjects and patients with motor neurone disease. Clinical Neurophysiology, 2020, 131, 1986-1996.	0.7	12
302	Neu-horizons: neuroprotection and therapeutic use of riluzole for the prevention of oxaliplatin-induced neuropathy—a randomised controlled trial. Supportive Care in Cancer, 2021, 29, 1103-1110.	1.0	12
303	Pathophysiological associations of transcallosal dysfunction in ALS. European Journal of Neurology, 2021, 28, 1172-1180.	1.7	12
304	Motor cortical excitability predicts cognitive phenotypes in amyotrophic lateral sclerosis. Scientific Reports, 2021, 11, 2172.	1.6	12
305	Weekly Paclitaxel-Induced Neurotoxicity in Breast Cancer: Outcomes and Dose Response. Oncologist, 2021, 26, 366-374.	1.9	12
306	Apathy is associated with parietal cortical-subcortical dysfunction in ALS. Cortex, 2021, 145, 341-349.	1.1	12

#	Article	IF	CITATIONS
307	Association of Cortical Hyperexcitability and Cognitive Impairment in Patients With Amyotrophic Lateral Sclerosis. Neurology, 2021, 96, e2090-e2097.	1.5	12
308	Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Medicine, 2022, 14, 7.	3.6	12
309	Riluzole: a glimmer of hope in the treatment of motor neurone disease. Medical Journal of Australia, 2005, 182, 319-320.	0.8	11
310	Treatment approaches in motor neurone disease. Current Opinion in Neurology, 2016, 29, 581-591.	1.8	11
311	Diaphragm ultrasound in amyotrophic lateral sclerosis and other neuromuscular disorders. Clinical Neurophysiology, 2016, 127, 28-30.	0.7	11
312	Human cerebral evolution and the clinical syndrome of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 570-575.	0.9	11
313	Interneuronal networks mediate cortical inhibition and facilitation. Clinical Neurophysiology, 2020, 131, 1000-1010.	0.7	11
314	Neural mechanisms of psychosis vulnerability and perceptual abnormalities in the ALSâ€FTD spectrum. Annals of Clinical and Translational Neurology, 2021, 8, 1576-1591.	1.7	11
315	Neurophysiological features of primary lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 11-17.	1.1	11
316	Apathy in amyotrophic lateral sclerosis: systematic review and meta-analysis of frequency, correlates, and outcomes. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2023, 24, 14-23.	1.1	11
317	Assessing chemotherapy-induced peripheral neuropathy with patient reported outcome measures: a systematic review of measurement properties and considerations for future use. Quality of Life Research, 2022, 31, 3091-3107.	1.5	11
318	TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioral variant frontotemporal dementia. Journal of the Neurological Sciences, 2016, 366, 197-201.	0.3	10
319	Effect of fampridine on axonal excitability in multiple sclerosis. Clinical Neurophysiology, 2016, 127, 2636-2642.	0.7	10
320	Laterality of motor cortical function measured by transcranial magnetic stimulation threshold tracking. Muscle and Nerve, 2017, 55, 424-427.	1.0	10
321	Fampridine treatment and walking distance in multiple sclerosis: A randomised controlled trial. Clinical Neurophysiology, 2017, 128, 93-99.	0.7	10
322	Motor neurone disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 159, 345-357.	1.0	10
323	CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. Journal of Biological Chemistry, 2019, 294, 14149-14162.	1.6	10
324	Neural networks associated with body composition in frontotemporal dementia. Annals of Clinical and Translational Neurology, 2019, 6, 1707-1717.	1.7	10

#	Article	IF	CITATIONS
325	Sonographic assessment of nerve blood flow in diabetic neuropathy. Diabetic Medicine, 2020, 37, 343-349.	1.2	10
326	Effect of Hemodiafiltration on the Progression of Neuropathy with Kidney Failure. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1365-1375.	2.2	10
327	Monomelic amyotrophy: non progressive atrophy of the upper limb. Journal of Clinical Neuroscience, 1999, 6, 353-355.	0.8	9
328	The standard of care in amyotrophic lateral sclerosis: a centralised multidisciplinary clinic encounter sets a new benchmark for a uniquely challenging neurodegenerative disorder. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 481-482.	0.9	9
329	Palliative care in amyotrophic lateral sclerosis. Lancet Neurology, The, 2015, 14, 347-348.	4.9	9
330	Cortical function and corticomotoneuronal adaptation in monomelic amyotrophy. Clinical Neurophysiology, 2017, 128, 1488-1495.	0.7	9
331	Excitability of sensory axons in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2018, 129, 1472-1478.	0.7	9
332	Effects of hemodialysis on intraneural blood flow in endâ€stage kidney disease. Muscle and Nerve, 2018, 57, 287-293.	1.0	9
333	A unified model of the excitability of mouse sensory and motor axons. Journal of the Peripheral Nervous System, 2018, 23, 159-173.	1.4	9
334	Predictors of survival in frontotemporal lobar degeneration syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 425-433.	0.9	9
335	Distal excitability properties of median motor axons. Muscle and Nerve, 2001, 24, 1695-1698.	1.0	8
336	Threshold electrotonus and the assessment of nerve excitability in amyotrophic lateral sclerosis. Handbook of Clinical Neurophysiology, 2004, 4, 359-366.	0.0	8
337	Amyotrophic lateral sclerosis and the neuroprotective potential of exercise. Journal of Physiology, 2009, 587, 3759-3760.	1.3	8
338	Nerve Excitability. , 2012, , 345-365.		8
339	ALS and neuromuscular disease: in search of the Holy Grail. Lancet Neurology, The, 2014, 13, 13-14.	4.9	8
340	Cardiometabolic health and risk of amyotrophic lateral sclerosis. Muscle and Nerve, 2017, 56, 721-725.	1.0	8
341	Selective Spatiotemporal Vulnerability of Central Nervous System Neurons to Pathologic TAR DNA-Binding Protein 43 in Aged Transgenic Mice. American Journal of Pathology, 2018, 188, 1447-1456.	1.9	8
342	Inherited Neuropathies. Seminars in Neurology, 2019, 39, 620-639.	0.5	8

#	Article	IF	CITATIONS
343	Genetic and immunopathological analysis of CHCHD10 in Australian amyotrophic lateral sclerosis and frontotemporal dementia and transgenic TDP-43 mice. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 162-171.	0.9	8
344	Cortical inexcitability defines an adverse clinical profile in amyotrophic lateral sclerosis. European Journal of Neurology, 2021, 28, 90-97.	1.7	8
345	Genetic Analysis of Tryptophan Metabolism Genes in Sporadic Amyotrophic Lateral Sclerosis. Frontiers in Immunology, 2021, 12, 701550.	2.2	8
346	Regional differences in ulnar nerve excitability may predispose to the development of entrapment neuropathy. Clinical Neurophysiology, 2011, 122, 194-198.	0.7	7
347	The effects of large artery ischemia and subsequent recanalization on nerve excitability. Muscle and Nerve, 2011, 44, 841-841.	1.0	7
348	The realm of neurology–past, present and future. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1-1.	0.9	7
349	Amyotrophic lateral sclerosis and frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 355-355.	0.9	7
350	Comparative study to evaluate the effects of peritoneal and hemodialysis on peripheral nerve function. Muscle and Nerve, 2016, 54, 58-64.	1.0	7
351	Nerve Pathology Distinguishes Focal Motor Chronic Inflammatory Demyelinating Polyradiculoneuropathy From Multifocal Motor Neuropathy. Journal of Clinical Neuromuscular Disease, 2020, 22, 1-10.	0.3	7
352	Review Article "Spotlight on Ultrasonography in the Diagnosis of Peripheral Nerve Disease: The Evidence to Date― International Journal of General Medicine, 2021, Volume 14, 4579-4604.	0.8	7
353	Problem-focused coping underlying lower caregiver burden in ALS-FTD: implications for caregiver intervention. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 434-441.	1.1	7
354	Inflections in threshold electrotonus to depolarizing currents in sensory axons. Muscle and Nerve, 2007, 36, 849-852.	1.0	6
355	Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain and Behavior, 2016, 6, e00516.	1.0	6
356	Emergence of an imaging biomarker for amyotrophic lateral sclerosis: is the end point near?. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 569-569.	0.9	6
357	Prognostic factors in C9orf72 amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 281.2-281.	0.9	6
358	Oxaliplatin and neuropathy: A role for sodium channels. Clinical Neurophysiology, 2018, 129, 670-671.	0.7	6
359	Amyotrophic lateral sclerosis: a new diagnostic paradigm. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 903-904.	0.9	6
360	Coexisting Lewy body disease and clinical parkinsonism in amyotrophic lateral sclerosis. European Journal of Neurology, 2021, 28, 2192-2199.	1.7	6

#	Article	IF	CITATIONS
361	Genetic analysis of GLT8D1 and ARPP21 in Australian familial and sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2021, 101, 297.e9-297.e11.	1.5	6
362	Brainstem Correlates of Pathological Laughter and Crying Frequency in ALS. Frontiers in Neurology, 2021, 12, 704059.	1.1	6
363	Posturography as a biomarker of intravenous immunoglobulin efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Muscle and Nerve, 2022, 65, 43-50.	1.0	6
364	Factors That Influence Non-Motor Impairment Across the ALS-FTD Spectrum: Impact of Phenotype, Sex, Age, Onset and Disease Stage. Frontiers in Neurology, 2021, 12, 743688.	1.1	6
365	Neuronal Hyperexcitability and Free Radical Toxicity in Amyotrophic Lateral Sclerosis: Established and Future Targets. Pharmaceuticals, 2022, 15, 433.	1.7	6
366	Thalamic and Cerebellar Regional Involvement across the ALS–FTD Spectrum and the Effect of C9orf72. Brain Sciences, 2022, 12, 336.	1.1	6
367	Emergence of a Predictive Clinical Biomarker for Diabetic Neuropathy. Diabetes, 2012, 61, 1346-1347.	0.3	5
368	Lou Gehrig and the ALS split hand. Neurology, 2015, 85, 1995-1995.	1.5	5
369	Progressive bilateral facial weakness. Practical Neurology, 2015, 15, 76-79.	0.5	5
370	Sensory and motor axons are different: implications for neurological disease. Annals of Clinical Neurophysiology, 2017, 19, 3.	0.1	5
371	Changes in long term peripheral nerve biophysical properties in childhood cancer survivors following neurotoxic chemotherapy. Clinical Neurophysiology, 2020, 131, 783-790.	0.7	5
372	Jewels in the crown: a century of achievement for the Journal of Neurology, Neurosurgery & Psychiatry. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1-2.	0.9	5
373	Effect of racial background on motor cortical function as measured by threshold tracking transcranial magnetic stimulation. Journal of Neurophysiology, 2021, 126, 840-844.	0.9	5
374	My memories are important to me: Changes in autobiographical memory in amyotrophic lateral sclerosis Neuropsychology, 2016, 30, 920-930.	1.0	5
375	Kinnier Wilson's puzzling features of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 657-666.	0.9	4
376	Review of the revised amyotrophic lateral sclerosis diagnostic criteria. Clinical Neurophysiology, 2020, 131, 1767-1768.	0.7	4
377	Neural correlates of fat preference in frontotemporal dementia: translating insights from the obesity literature. Annals of Clinical and Translational Neurology, 2021, 8, 1318-1329.	1.7	4
378	MiNDAUS partnership: a roadmap for the cure and management of motor Neurone disease. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 321-328.	1.1	4

#	Article	IF	CITATIONS
379	A Systematic Review of Caregiver Coping Strategies in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Journal of Geriatric Psychiatry and Neurology, 2022, 35, 763-777.	1.2	4
380	Mitochondrial dysfunction and rod-like lesions associated with administration of β2 adrenoceptor agonist formoterol. Neuromuscular Disorders, 2004, 14, 375-377.	0.3	3
381	Stimulus, response and excitability – What is new?. Clinical Neurophysiology, 2018, 129, 333-334.	0.7	3
382	Fatal cerebellar oedema in adult Leigh syndrome. Practical Neurology, 2020, 20, 336-337.	0.5	3
383	Heat sensitivity of sensory fibers in carpal tunnel syndrome. , 1999, 22, 969-970.		2
384	The contribution of SK3 polymorphisms to acute oxaliplatin-induced neurotoxicity: direct or indirect effects?. Cancer Chemotherapy and Pharmacology, 2011, 67, 1189-1190.	1.1	2
385	Acute bulbar, neck and limb weakness with monospecific antiâ€GT1a antibody: A rare localized subtype of Guillainâ€Barré sydnrome. Muscle and Nerve, 2016, 53, 143-146.	1.0	2
386	Some do not like it hot. Journal of Physiology, 2017, 595, 3251-3252.	1.3	2
387	Multimodal quantitative examination of nerve function in colorectal cancer patients prior to chemotherapy. Muscle and Nerve, 2018, 57, 615-621.	1.0	2
388	Frontostriatal grey matter atrophy in amyotrophic lateral sclerosis A visual rating study. Dementia E Neuropsychologia, 2018, 12, 388-393.	0.3	2
389	Patient Editorial Board for JNNP. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 369-370.	0.9	2
390	Fasciculation anxiety syndrome in clinicians: FASICS. Practical Neurology, 2020, 20, 433-434.	0.5	2
391	Mills Syndrome. Neurology, 2021, 96, 677-678.	1.5	2
392	Illness Cognitions in ALS: New Insights Into Clinical Management of Behavioural Symptoms. Frontiers in Neurology, 2021, 12, 740693.	1.1	2
393	Nerve biopsy in acquired neuropathies. Journal of the Peripheral Nervous System, 2021, 26 Suppl 2, S21-S41.	1.4	2
394	Differences in nerve excitability properties across upper limb sensory and motor axons. Clinical Neurophysiology, 2022, 136, 138-149.	0.7	2
395	Development and consensus process for a clinical pathway for the assessment and management of chemotherapy-induced peripheral neuropathy. Supportive Care in Cancer, 2022, 30, 5965-5974.	1.0	2
396	A robust framework for characterising diffusion metrics of the median and ulnar nerves: Exploiting stateâ€ofâ€theâ€art tracking methods. Journal of the Peripheral Nervous System, 2022, 27, 67-83.	1.4	2

1

#	Article	IF	CITATIONS
397	Electrodiagnostic findings in facial onset sensory motor neuronopathy (FOSMN). Clinical Neurophysiology, 2022, 140, 228-238.	0.7	2
398	Riluzole: a glimmer of hope in the treatment of motor neurone disease. Medical Journal of Australia, 2005, 183, 164-165.	0.8	1
399	Why an Australian editor for JNNP?. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 1-1.	0.9	1
400	Cortical dysfunction in cerebellar ataxia with antibodies to glutamic acid decarboxylase. Journal of Neurology, 2014, 261, 238-239.	1.8	1
401	The Babinski sign. Practical Neurology, 2016, 16, 419-420.	0.5	1
402	Author response: Diagnostic criteria in amyotrophic lateral sclerosis: A multicenter prospective study. Neurology, 2017, 88, 719-719.	1.5	1
403	Inflammatory neuropathies: all shapes and sizes. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1128-1128.	0.9	1
404	Milestones. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1189-1189.	0.9	1
405	Theme 11 Cognitive and psychological assessment and support. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 301-308.	1.1	1
406	Metabolomic insights into neurodegeneÂrative disease. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1250-1250.	0.9	1
407	Treating adults with spinal muscular atrophy with nusinersen. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1139-1139.	0.9	1
408	The Journal of Neurology, Neurosurgery and Psychiatry centenary milestone award 2020. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 677-677.	0.9	1
409	Expanding the availability of medications for amyotrophic lateral sclerosis in Australia. Medical Journal of Australia, 2020, 212, 189.	0.8	1
410	A novel phenotype of hereditary spastic paraplegia type 7 associated with a compound heterozygous mutation in paraplegin. Muscle and Nerve, 2020, 62, E44-E45.	1.0	1
411	Subacute sensory neuronopathy and cancer: the identification of paraneoplastic syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 793-794.	0.9	1
412	Neurology and clinical neurophysiology: an artificial divide. Practical Neurology, 2021, 21, 274-275.	0.5	1
413	Clinical evaluation of excitability measures in sensory nerve. Muscle and Nerve, 2001, 24, 883-892.	1.0	1

Transcranial magnetic stimulation in the cortical exploration of dementia. , 2020, , 327-343.

#	Article	IF	CITATIONS
415	Chapter 23 Pathophysiology of paraesthesiae. Supplements To Clinical Neurophysiology, 2002, 54, 156-162.	2.1	0
416	Chemotherapy-Induced Neurotoxicity. , 2010, , 99-119.		0
417	Response to Karam et al Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 159-160.	2.3	0
418	Natural history and the dawning of a new era for familial ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 95-96.	0.9	0
419	Maternal autoimmunity: risk of neurodevelopmental and neuropsychiatric outcomes. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 713-714.	0.9	0
420	Transforming the management of stroke. Medical Journal of Australia, 2017, 206, 342-343.	0.8	0
421	Sound of the crowd: wisdom of neurologists revisited. Practical Neurology, 2019, 19, 552-552.	0.5	0
422	Motor neuron disease with malignancy: Clinical and pathophysiological insights. Clinical Neurophysiology, 2019, 130, 1557-1561.	0.7	0
423	Marco Polo of Australian neurology. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 627-628.	0.9	0
424	009â€Axonal excitability properties in dravet's syndrome reflect effect of loss of sodium channels. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, A4.1-A4.	0.9	0
425	Queen Square: a history of the National Hospital and its Institute of Neurology. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 560-561.	0.9	0
426	Neurotoxicity and ALS: Insights into Pathogenesis. , 2021, , 1-19.		0
427	Author Response: Phenotypic Variability in ALS-FTD and Effect on Survival. Neurology, 2021, 96, 1103-1104.	1.5	0
428	026â€Posturography as a biomarker of IVIG efficacy in CIDP patients. , 2021, , .		0
429	The end of the affair?. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1249-1250.	0.9	0
430	Impulse Conduction. , 2003, , 639-642.		0
431	Neurotoxicity and ALS: Insights into Pathogenesis. , 2014, , 1435-1456.		0
432	Functional Characterisation of a GWAS Risk Locus Identifies <i>GPX3</i> as a Lead Candidate Gene in ALS. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
433	Schizotypal traits across the amyotrophic lateral sclerosis–frontotemporal dementia spectrum: pathomechanistic insights. Journal of Neurology, 2022, , 1.	1.8	0
434	Brainspotting: Adventures in Neurology. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 800-801.	0.9	0