Jong-Kook Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1942280/publications.pdf

Version: 2024-02-01

159585 182427 2,802 83 30 51 citations h-index g-index papers 85 85 85 4309 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human-Induced Pluripotent Stem Cell–Derived Cardiomyocyte Model for <i>TNNT2</i> Δ160E-Induced Cardiomyopathy. Circulation Genomic and Precision Medicine, 2022, 15, .	3.6	5
2	Scaffold-Mediated Developmental Effects on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Are Preserved After External Support Removal. Frontiers in Cell and Developmental Biology, 2021, 9, 591754.	3.7	3
3	Decreased YAP activity reduces proliferative ability in human induced pluripotent stem cell of duchenne muscular dystrophy derived cardiomyocytes. Scientific Reports, 2021, 11, 10351.	3.3	7
4	Homogeneous 2D and 3D alignment of cardiomyocyte in dilated cardiomyopathy revealed by intravital heart imaging. Scientific Reports, 2021, 11, 14698.	3.3	3
5	High-Throughput Drug Screening System Based on Human Induced Pluripotent Stem Cell-Derived Atrial Myocytes â ⁻¹ /4 A Novel Platform to Detect Cardiac Toxicity for Atrial Arrhythmias. Frontiers in Pharmacology, 2021, 12, 680618.	3.5	10
6	Protocol for Morphological and Functional Phenotype Analysis of hiPS-Derived. Methods in Molecular Biology, 2021, 2320, 91-100.	0.9	0
7	Aberrant accumulation of TMEM43 accompanied by perturbed transmural gene expression in arrhythmogenic cardiomyopathy. FASEB Journal, 2021, 35, e21994.	0.5	7
8	Geometrical Patterning and Constituent Cell Heterogeneity Facilitate Electrical Conduction Disturbances in a Human Induced Pluripotent Stem Cell-Based Platform: An In vitro Disease Model of Atrial Arrhythmias. Frontiers in Physiology, 2019, 10, 818.	2.8	15
9	Activation of DNA Damage Response and Cellular Senescence in Cardiac Fibroblasts Limit Cardiac Fibrosis After Myocardial Infarction. International Heart Journal, 2019, 60, 944-957.	1.0	21
10	In vitro platform of allogeneic stem cell-derived cardiomyocyte transplantation for cardiac conduction defects. Europace, 2018, 20, 1553-1560.	1.7	2
11	Pivotal Role of Non-cardiomyocytes in Electromechanical and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissue. Tissue Engineering - Part A, 2018, 24, 287-300.	3.1	63
12	Generation of Fabry cardiomyopathy model for drug screening using induced pluripotent stem cell-derived cardiomyocytes from a female Fabry patient. Journal of Molecular and Cellular Cardiology, 2018, 121, 256-265.	1.9	21
13	Phenotypic Screening Using Patient-Derived Induced Pluripotent Stem Cells Identified Pyr3 as a Candidate Compound for the Treatment of Infantile Hypertrophic Cardiomyopathy. International Heart Journal, 2018, 59, 1096-1105.	1.0	13
14	DNA single-strand break-induced DNA damage response causes heart failure. Nature Communications, 2017, 8, 15104.	12.8	85
15	An EP4 Receptor Agonist Inhibits Cardiac Fibrosis Through Activation of PKA Signaling in Hypertrophied Heart. International Heart Journal, 2017, 58, 107-114.	1.0	32
16	Quantification of sympathetic hyperinnervation and denervation after myocardial infarction by three-dimensional assessment of the cardiac sympathetic network in cleared transparent murine hearts. PLoS ONE, 2017, 12, e0182072.	2.5	40
17	Generation of Induced Pluripotent Stem Cells From Patients With Duchenne Muscular Dystrophy and Their Induction to Cardiomyocytes. International Heart Journal, 2016, 57, 112-117.	1.0	26
18	A New In Vitro Coâ€Culture Model Using Magnetic Forceâ€Based Nanotechnology. Journal of Cellular Physiology, 2016, 231, 2249-2256.	4.1	1

#	Article	IF	CITATIONS
19	The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Biochemical Journal, 2016, 473, 4361-4372.	3.7	4
20	Non-invasive Video Image-based Analysis Method Coupled to Field Potential Recording for Evaluation of the Drug-induced Effect in Cardiac Tissue. Electrochemistry, 2016, 84, 283-289.	1.4	1
21	Activation of endothelial \hat{l}^2 -catenin signaling induces heart failure. Scientific Reports, 2016, 6, 25009.	3.3	27
22	Regeneration of the Cardiac Conduction System by Adipose Tissue-Derived Stem Cells. Circulation Journal, 2015, 79, 2703-2712.	1.6	23
23	Monocyte-derived extracellular Nampt-dependent biosynthesis of NAD+ protects the heart against pressure overload. Scientific Reports, 2015, 5, 15857.	3.3	25
24	Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression. Scientific Reports, 2015, 5, 14453.	3.3	42
25	Wnt/ \hat{l}^2 -Catenin Signaling Contributes to Skeletal Myopathy in Heart Failure via Direct Interaction With Forkhead Box O. Circulation: Heart Failure, 2015, 8, 799-808.	3.9	34
26	Optical microscopy imaging for the diagnosis of the pharmacological reaction of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs). Analyst, The, 2015, 140, 6500-6507.	3.5	2
27	Complement C1q-induced activation of \hat{l}^2 -catenin signalling causes hypertensive arterial remodelling. Nature Communications, 2015, 6, 6241.	12.8	51
28	Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H512-H522.	3.2	81
29	Single cell trapping and cell–cell interaction monitoring of cardiomyocytes in a designed microfluidic chip. Sensors and Actuators B: Chemical, 2015, 207, 43-50.	7.8	27
30	N-Glycans: Phenotypic Homology and Structural Differences between Myocardial Cells and Induced Pluripotent Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2014, 9, e111064.	2.5	14
31	Rapid electrical stimulation causes alterations in cardiac intercellular junction proteins of cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1324-H1333.	3.2	17
32	Calpain-dependent Cleavage of N-cadherin Is Involved in the Progression of Post-myocardial Infarction Remodeling. Journal of Biological Chemistry, 2014, 289, 19408-19419.	3.4	40
33	Excitation propagation in three-dimensional engineered hearts using decellularized extracellular matrix. Biomaterials, 2014, 35, 7839-7850.	11.4	46
34	Microfabricated device for co-culture of sympathetic neuron and iPS-derived cardiomyocytes., 2013, 2013, 3817-20.		5
35	Notch activation mediates angiotensin Il-induced vascular remodeling by promoting the proliferation and migration of vascular smooth muscle cells. Hypertension Research, 2013, 36, 859-865.	2.7	37
36	Cardiac ß -catenin Alterations Play an Important Role in Gap Junction Remodeling of Cardiomyocytes Exposed to Rapid Electrical Stimulation. Journal of Cardiac Failure, 2013, 19, S166.	1.7	0

#	Article	IF	CITATIONS
37	Electrical Properties of Engineered Heart Tissues: Its Implication and Application for Arrhythmias. Journal of Cardiac Failure, 2013, 19, S120.	1.7	O
38	Sympathetic Innervation Induced in Engrafted Engineered Cardiomyocyte Sheets by Glial Cell Line Derived Neurotrophic Factor <i>In Vivo</i> . BioMed Research International, 2013, 2013, 1-8.	1.9	5
39	Axon Guidance of Sympathetic Neurons to Cardiomyocytes by Glial Cell Line-Derived Neurotrophic Factor (GDNF). PLoS ONE, 2013, 8, e65202.	2.5	25
40	Construction of Functional Cardiovascular Tissues Using Magnetic Nanoparticles. , 2013, , 221-228.		2
41	Sympathetic neurons modulate the beat rate of pluripotent cell-derived cardiomyocytes in vitro. Integrative Biology (United Kingdom), 2012, 4, 1532.	1.3	28
42	Complement C1q Activates Canonical Wnt Signaling and Promotes Aging-Related Phenotypes. Cell, 2012, 149, 1298-1313.	28.9	278
43	Device for co-culture of sympathetic neurons and cardiomyocytes using microfabrication. Lab on A Chip, 2011, 11, 2268.	6.0	57
44	Development of spatially separated coculture system of the sympathetic neuron and the cardiomyocyte. IEEJ Transactions on Electrical and Electronic Engineering, 2011, 6, 151-156.	1.4	0
45	Developmental changes in spontaneous beating rhythm of cardiac myocytes cultured in vitro by molecular diffusion culture method. Electronics and Communications in Japan, 2011, 94, 35-42.	0.5	0
46	Autonomic nervous system driven cardiomyocytes in vitro., 2011, 2011, 1945-8.		2
47	Rate-dependent shortening of action potential duration increases ventricular vulnerability in failing rabbit heart. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H565-H573.	3.2	42
48	Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages. Biomedical Research, 2010, 31, 353-361.	0.9	8
49	The Cellular Prion Protein Identifies Bipotential Cardiomyogenic Progenitors. Circulation Research, 2010, 106, 111-119.	4.5	33
50	Small Animal Models for Arrhythmia Studies. , 2010, , 261-279.		0
51	Induction of Sympathetic Innervation to Stem Cell-Derived Cardiomyocytes. Journal of Cardiac Failure, 2010, 16, S139.	1.7	0
52	Effects of Electrical Stimulation in Sympathetic Neuron-Cardiomyocyte Co-cultures. IEEJ Transactions on Electronics, Information and Systems, 2010, 130, 1139-1144.	0.2	0
53	Development of semi-separated co-culture system of sympathetic neuron and cardiomyocyte., 2009, 2009, 1832-5.		1
54	Regeneration of Cardiac Conduction System by Adipose Tissue Derived-stem Cells. Journal of Cardiac Failure, 2009, 15, S149.	1.7	3

#	Article	IF	CITATIONS
55	Effects of Aldosterone on Cx43 Gap Junction Expression in Neonatal Rat Cultured Cardiomyocytes. Circulation Journal, 2009, 73, 1504-1512.	1.6	17
56	Development of Semi-Separated Co-Culture System for Electrical Stimulation and Extracellular Recording of Sympathetic Neuron and Cardiomyocyte. IEEJ Transactions on Electronics, Information and Systems, 2009, 129, 1225-1230.	0.2	2
57	Long-term amiodarone treatment causes cardioselective hypothyroid-like alteration in gene expression profile. European Journal of Pharmacology, 2008, 578, 270-278.	3.5	7
58	T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin–NFAT3 activation as well as L-type Ca2+ channel blockers. Life Sciences, 2008, 82, 554-560.	4.3	43
59	Paracrine factors of vascular endothelial cells facilitate cardiomyocyte differentiation of mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2008, 377, 413-418.	2.1	20
60	Changes of HCN gene expression and If currents in Nkx2.5-positive cardiomyocytes derived from murine embryonic stem cells during differentiation. Biomedical Research, 2008, 29, 195-203.	0.9	13
61	Developmental Changes in Spontaneous Beating Rhythm of Cardiac Myocytes in vitro Cultured with Molecular Diffusion Culture Method. IEEJ Transactions on Electronics, Information and Systems, 2008, 128, 1064-1069.	0.2	1
62	Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8263-8268.	7.1	64
63	Aldosterone modulates If current through gene expression in cultured neonatal rat ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2710-H2718.	3.2	32
64	Gap Junction Remodeling Caused by Aldosterone is Modulated by Ca2+ Channel Activity. Journal of Cardiac Failure, 2007, 13, S34.	1.7	0
65	Construction of multi-layered cardiomyocyte sheets using magnetite nanoparticles and magnetic force. Biotechnology and Bioengineering, 2007, 96, 803-809.	3.3	87
66	Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nature Medicine, 2007, 13, 604-612.	30.7	209
67	Effects of Aldosterone on the Gap Junction Channel Protein Connexin43 in Neonatal Rat Ventricular Myocytes. Journal of Cardiac Failure, 2006, 12, S165.	1.7	0
68	Midkine Plays a Protective Role Against Cardiac Ischemia/Reperfusion Injury Through a Reduction of Apoptotic Reaction. Circulation, 2006, 114, 1713-1720.	1.6	91
69	Combined Effects of Nifekalant and Lidocaine on the Spiral-Type Re-Entry in a Perfused 2-Dimensional Layer of Rabbit Ventricular Myocardium. Circulation Journal, 2005, 69, 576-584.	1.6	23
70	Pathophysiological Significance of T-type Ca2+ Channels: Expression of T-type Ca2+ Channels in Fetal and Diseased Heart. Journal of Pharmacological Sciences, 2005, 99, 205-210.	2.5	49
71	Subtype Switching of L-Type Ca 2+ Channel From Cav1.3 to Cav1.2 in Embryonic Murine Ventricle. Circulation Journal, 2005, 69, 1405-1411.	1.6	26
72	Decreased Vagal Control Over Heart Rate in Rats With Right-Sided Congestive Heart Failure-Downregulation of Neuronal Nitric Oxide Synthase Circulation Journal, 2005, 69, 493-499.	1.6	20

#	Article	IF	CITATIONS
73	Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2257-H2263.	3.2	89
74	Sinoatrial Node Dysfunction and Early Unexpected Death of Mice With a Defect of <i>klotho</i> Gene Expression. Circulation, 2004, 109, 1776-1782.	1.6	201
75	Mechanosensitivity of GIRK Channels Is Mediated by Protein Kinase C-dependent Channel-Phosphatidylinositol 4,5-Bisphosphate Interaction. Journal of Biological Chemistry, 2004, 279, 7037-7047.	3.4	31
76	Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes. Journal of the American College of Cardiology, 2004, 44, 914-922.	2.8	29
77	Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. Journal of Molecular and Cellular Cardiology, 2003, 35, 1277-1284.	1.9	62
78	Chamberâ€specific differentiation of Nkx2.5â€positive cardiac precursor cells from murine embryonic stem cells. FASEB Journal, 2003, 17, 740-742.	0.5	158
79	lonic Mechanisms of Acquired QT Prolongation and Torsades de Pointes in Rabbits With Chronic Complete Atrioventricular Block. Circulation, 2002, 106, 2012-2018.	1.6	81
80	Residues and Mechanisms for Slow Activation and Ba2+Block of the Cardiac Muscarinic K+ Channel, Kir3.1/Kir3.4. Journal of Biological Chemistry, 2000, 275, 35831-35839.	3.4	25
81	Downregulation of voltage-gated K+ channels in rat heart with right ventricular hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1725-H1731.	3.2	33
82	Novel Gating Mechanism of Polyamine Block in the Strong Inward Rectifier K Channel Kir2.1. Journal of General Physiology, 1999, 113, 555-564.	1.9	48
83	Vesnarinone Prolongs Action Potential Duration Without Reverse Frequency Dependence in Rabbit Ventricular Muscle by Blocking the Delayed Rectifier K ⁺ Current. Circulation, 1997, 96, 3696-3703.	1.6	26