
Frank Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/194211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic profiling of metformin effects in 3T3‣1 adipocytes by SILACâ€based quantification. Proteomics, 2022, , 2100196.	1.3	1
2	Specific domain V reduction of beta-2-glycoprotein I induces protein flexibility and alters pathogenic antibody binding. Scientific Reports, 2021, 11, 4542.	1.6	3
3	A Comprehensive View on the Human Antibody Repertoire Against Staphylococcus aureus Antigens in the General Population. Frontiers in Immunology, 2021, 12, 651619.	2.2	24
4	Sputum Proteome Signatures of Mechanically Ventilated Intensive Care Unit Patients Distinguish Samples with or without Anti-pneumococcal Activity. MSystems, 2021, 6, .	1.7	4
5	Technical report: xMAPr – High-dynamic-range (HDR) quantification of antigen-specific antibody binding. Journal of Proteomics, 2020, 212, 103577.	1.2	7
6	Hfq modulates global protein pattern and stress response in Bordetella pertussis. Journal of Proteomics, 2020, 211, 103559.	1.2	5
7	Comparative Proteomic Profiling of 3T3-L1 Adipocyte Differentiation Using SILAC Quantification. Journal of Proteome Research, 2020, 19, 4884-4900.	1.8	5
8	Exploring metal availability in the natural niche of Streptococcus pneumoniae to discover potential vaccine antigens. Virulence, 2020, 11, 1310-1328.	1.8	8
9	Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6752-6761.	3.3	32
10	Early-Stage Staphylococcus aureus Bloodstream Infection Causes Changes in the Concentrations of Lipoproteins and Acute-Phase Proteins and Is Associated with Low Antibody Titers against Bacterial Virulence Factors. MSystems, 2020, 5, .	1.7	7
11	Defensive Function of Transposable Elements in Bacteria. ACS Synthetic Biology, 2019, 8, 2141-2151.	1.9	27
12	In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathogens, 2019, 15, e1007987.	2.1	25
13	Single-Cell and Time-Resolved Profiling of Intracellular <i>Salmonella</i> Metabolism in Primary Human Cells. Analytical Chemistry, 2019, 91, 7729-7737.	3.2	20
14	Proteome profiling of secreted and membrane vesicle associated proteins of an invasive and a commensal Staphylococcus haemolyticus isolate. Data in Brief, 2019, 22, 914-919.	0.5	2
15	Translation initiation factor IF2 contributes to ribosome assembly and maturation during cold adaptation. Nucleic Acids Research, 2019, 47, 4652-4662.	6.5	17
16	Comparative exoproteome profiling of an invasive and a commensal Staphylococcus haemolyticus isolate. Journal of Proteomics, 2019, 197, 106-114.	1.2	16
17	Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation. Thrombosis and Haemostasis, 2018, 47, 745-757.	1.8	27
18	Intranasal Vaccination With Lipoproteins Confers Protection Against Pneumococcal Colonisation. Frontiers in Immunology, 2018, 9, 2405.	2.2	33

#	Article	IF	CITATIONS
19	Sulfur-34S and 36S Stable Isotope Labeling of Amino Acids for Quantification (SULAQ34/36) of Proteome Analyses. Methods in Molecular Biology, 2018, 1841, 163-174.	0.4	0
20	In vivo Proteomics Approaches for the Analysis of Bacterial Adaptation Reactions in Host–Pathogen Settings. Methods in Molecular Biology, 2018, 1841, 207-228.	0.4	0
21	Analysis of Staphylococcus aureus proteins secreted inside infected human epithelial cells. International Journal of Medical Microbiology, 2018, 308, 664-674.	1.5	4
22	Staphylococcal serine protease–like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. Journal of Allergy and Clinical Immunology, 2017, 139, 492-500.e8.	1.5	118
23	Characterization of human and Staphylococcus aureus proteins in respiratory mucosa by in vivo- and immunoproteomics. Journal of Proteomics, 2017, 155, 31-39.	1.2	36
24	SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function. Journal of the American Society of Nephrology: JASN, 2017, 28, 981-994.	3.0	39
25	A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions. Scientific Reports, 2017, 7, 9718.	1.6	42
26	Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response—Note of Caution for In vivo Infection Experiments. Frontiers in Cellular and Infection Microbiology, 2017, 7, 152.	1.8	30
27	Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates. Proteomes, 2016, 4, 11.	1.7	15
28	Staphylococcus aureus Transcriptome Architecture: From Laboratory to Infection-Mimicking Conditions. PLoS Genetics, 2016, 12, e1005962.	1.5	170
29	Adaptive immune response to lipoproteins of Staphylococcus aureus in healthy subjects. Proteomics, 2016, 16, 2667-2677.	1.3	13
30	Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits. American Journal of Human Genetics, 2016, 99, 8-21.	2.6	60
31	Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells. Data in Brief, 2016, 7, 1031-1037.	0.5	1
32	Alternative fluorescent labeling strategies for characterizing gramâ€positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of <i>Staphylococcus aureus</i> retrieved from infected host cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 932-940.	1.1	20
33	Proteome analysis of Bordetella pertussis isolated from human macrophages. Journal of Proteomics, 2016, 136, 55-67.	1.2	19
34	A peptide resource for the analysis of Staphylococcus aureus in host-pathogen interaction studies. Proteomics, 2015, 15, 3648-3661.	1.3	24
35	Large-Scale Genomic Analyses Link Reproductive Aging to Hypothalamic Signaling, Breast Cancer Susceptibility, and BRCA1-Mediated DNA Repair. Obstetrical and Cynecological Survey, 2015, 70, 758-762.	0.2	0
36	The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components. PLoS Pathogens, 2015, 11, e1004883.	2.1	74

#	Article	IF	CITATIONS
37	A proteomic perspective of the interplay of Staphylococcus aureus and human alveolar epithelial cells during infection. Journal of Proteomics, 2015, 128, 203-217.	1.2	24
38	Shotgun proteome analysis of <i>Bordetella pertussis</i> reveals a distinct influence of iron availability on the bacterial metabolism, virulence, and defense response. Proteomics, 2015, 15, 2258-2266.	1.3	12
39	reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass Spectra. Journal of the American Society for Mass Spectrometry, 2015, 26, 1837-1847.	1.2	17
40	Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature Genetics, 2015, 47, 1294-1303.	9.4	357
41	Specific serum IgG at diagnosis of Staphylococcus aureus bloodstream invasion is correlated with disease progression. Journal of Proteomics, 2015, 128, 1-7.	1.2	49
42	Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Frontiers in Microbiology, 2014, 5, 392.	1.5	32
43	Labeling of the pathogenic bacterium <i>Staphylococcus aureus</i> with gold or ferric oxideâ€core nanoparticles highlights new capabilities for investigation of host–pathogen interactions. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 140-150.	1.1	13
44	Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nature Genetics, 2014, 46, 629-634.	9.4	113
45	Quantitative proteomics in the field of microbiology. Proteomics, 2014, 14, 547-565.	1.3	66
46	Altered immune proteome ofStaphylococcus aureusunder iron-restricted growth conditions. Proteomics, 2014, 14, 1857-1867.	1.3	13
47	Bone marrow-derived macrophages from BALB/c and C57BL/6 mice fundamentally differ in their respiratory chain complex proteins, lysosomal enzymes and components of antioxidant stress systems. Journal of Proteomics, 2014, 103, 72-86.	1.2	26
48	Activation of the alternative sigma factor SigB of Staphylococcus aureus following internalization by epithelial cells – An in vivo proteomics perspective. International Journal of Medical Microbiology, 2014, 304, 177-187.	1.5	29
49	A proteomics workflow for quantitative and time-resolved analysis of adaptation reactions of internalized bacteria. Methods, 2013, 61, 244-250.	1.9	25
50	Data visualization in environmental proteomics. Proteomics, 2013, 13, 2805-2821.	1.3	21
51	Proteomics approaches for the analysis of enriched microbial subpopulations and visualization of complex functional information. Current Opinion in Biotechnology, 2013, 24, 112-119.	3.3	30
52	Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. ISME Journal, 2013, 7, 1877-1885.	4.4	107
53	Sulfur-34S Stable Isotope Labeling of Amino Acids for Quantification (SULAQ34) of Proteomic Changes in Pseudomonas fluorescens during Naphthalene Degradation. Molecular and Cellular Proteomics, 2013, 12, 2060-2069.	2.5	17
54	Identification of Lactobacilli from Deep Carious Lesions by Means of Species-Specific PCR and MALDI-TOF Mass Spectrometry. Clinical Laboratory, 2013, 59, 1373-9.	0.2	23

#	Article	IF	CITATIONS
55	Sulfurâ€ ³⁶ S stable isotope labeling of amino acids for quantification (SULAQ). Proteomics, 2012, 12, 37-42.	1.3	20
56	Proteinâ€based stable isotope probing (protein‣IP) in functional metaproteomics. Mass Spectrometry Reviews, 2012, 31, 683-697.	2.8	61
57	Functional genomics of the initial phase of cold adaptation of Pseudomonas putida KT2440. FEMS Microbiology Letters, 2011, 318, 47-54.	0.7	26
58	Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells. Amino Acids, 2011, 41, 351-361.	1.2	16
59	Time resolved proteinâ€based stable isotope probing (Proteinâ€6IP) analysis allows quantification of induced proteins in substrate shift experiments. Proteomics, 2011, 11, 2265-2274.	1.3	40
60	Proteome analysis of host–pathogen interactions: Investigation of pathogen responses to the host cell environment. Proteomics, 2011, 11, 3203-3211.	1.3	68
61	Impairment of Immunoproteasome Function by β5i/LMP7 Subunit Deficiency Results in Severe Enterovirus Myocarditis. PLoS Pathogens, 2011, 7, e1002233.	2.1	78
62	Advanced tool for characterization of microbial cultures by combining cytomics and proteomics. Applied Microbiology and Biotechnology, 2010, 88, 575-584.	1.7	44
63	Calculation of partial isotope incorporation into peptides measured by mass spectrometry. BMC Research Notes, 2010, 3, 178.	0.6	7
64	Proteomic characterization of a <i>pilR</i> regulatory mutant of <i>Azoarcus</i> sp. strain BH72 with the aid of gelâ€based and gelâ€free approaches. Proteomics, 2010, 10, 458-469.	1.3	10
65	Timeâ€resolved quantitative proteome profiling of host–pathogen interactions: The response of <i>Staphylococcus aureus</i> RN1HG to internalisation by human airway epithelial cells. Proteomics, 2010, 10, 2801-2811.	1.3	45
66	Protein-based stable isotope probing. Nature Protocols, 2010, 5, 1957-1966.	5.5	97
67	Decimal Place Slope, A Fast and Precise Method for Quantifying 13C Incorporation Levels for Detecting the Metabolic Activity of Microbial Species. Molecular and Cellular Proteomics, 2010, 9, 1221-1227.	2.5	19
68	Combined Genomic and Proteomic Approaches Identify Gene Clusters Involved in Anaerobic 2-Methylnaphthalene Degradation in the Sulfate-Reducing Enrichment Culture N47. Journal of Bacteriology, 2010, 192, 295-306.	1.0	101
69	Declining Capacity of Starving <i>Delftia acidovorans</i> MC1 to Degrade Phenoxypropionate Herbicides Correlates with Oxidative Modification of the Initial Enzyme. Environmental Science & Technology, 2010, 44, 3793-3799.	4.6	14
70	Prediction of flocculation ability of brewing yeast inoculates by flow cytometry, proteome analysis, and mRNA profiling. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 140-147.	1.1	23
71	Shotgun mass mapping of <i>Lactobacillus</i> species and subspecies from caries related isolates by MALDIâ€MS. Proteomics, 2009, 9, 1994-2003.	1.3	35
72	Comparison of methods for simultaneous identification of bacterial species and determination of metabolic activity by proteinâ€based stable isotope probing (Proteinâ€6IP) experiments. Rapid Communications in Mass Spectrometry, 2009, 23, 1871-1878.	0.7	28

#	Article	IF	CITATIONS
73	Identification of harmless and pathogenic algae of the genus <i>Prototheca</i> by MALDIâ€MS. Proteomics - Clinical Applications, 2009, 3, 774-784.	0.8	44
74	Assembling proteomics data as a prerequisite for the analysis of large scale experiments. Chemistry Central Journal, 2009, 3, 2.	2.6	5
75	A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbiology Letters, 2009, 296, 149-158.	0.7	94
76	Incorporation of carbon and nitrogen atoms into proteins measured by proteinâ€based stable isotope probing (Proteinâ€SIP). Rapid Communications in Mass Spectrometry, 2008, 22, 2889-2897.	0.7	77
77	Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. ISME Journal, 2008, 2, 1122-1133.	4.4	126
78	Quantitative proteome analysis of cisplatinâ€induced apoptotic Jurkat T cells by stable isotope labeling with amino acids in cell culture, SDSâ€PACE, and LCâ€MALDIâ€TOF/TOF MS. Electrophoresis, 2007, 28, 4359-4368.	1.3	24
79	Rapid determination of amino acid incorporation by stable isotope labeling with amino acids in cell culture (SILAC). Rapid Communications in Mass Spectrometry, 2007, 21, 3919-3926.	0.7	28
80	An improved strategy for selective and efficient enrichment of integral plasma membrane proteins of mycobacteria. Proteomics, 2007, 7, 1687-1701.	1.3	33
81	Distinctive mass losses of tryptic peptides generated by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight. Rapid Communications in Mass Spectrometry, 2006, 20, 933-936.	0.7	12
82	Proteins unique to intraphagosomally grownMycobacterium tuberculosis. Proteomics, 2006, 6, 2485-2494.	1.3	75
83	Comprehensive quantitative proteome analysis of 20S proteasome subtypes from rat liver by isotope coded affinity tag and 2-D gel-based approaches. Proteomics, 2006, 6, 4622-4632.	1.3	50
84	Peptide mass fingerprinting. Methods, 2005, 35, 237-247.	1.9	202
85	Complementary Analysis of the Mycobacterium tuberculosis Proteome by Two-dimensional Electrophoresis and Isotope-coded Affinity Tag Technology. Molecular and Cellular Proteomics, 2004, 3, 24-42.	2.5	160
86	Web-accessible proteome databases for microbial research. Proteomics, 2004, 4, 1305-1313.	1.3	41
87	Protein identification and tracking in two-dimensional electrophoretic gels by minimal protein identifiers. Proteomics, 2004, 4, 2927-2941.	1.3	29
88	Comparative proteome analysis of culture supernatant proteins from virulentMycobacterium tuberculosis H37Rv and attenuatedM. bovis BCG Copenhagen. Electrophoresis, 2003, 24, 3405-3420.	1.3	156
89	Iterative data analysis is the key for exhaustive analysis of peptide mass fingerprints from proteins separated by two-dimensional electrophoresis. Journal of the American Society for Mass Spectrometry, 2003, 14, 943-956.	1.2	73
90	Analysis of Automatically Generated Peptide Mass Fingerprints of Cellular Proteins and Antigens from Helicobacter pylori 26695 Separated by Two-dimensional Electrophoresis. Molecular and Cellular Proteomics, 2003, 2, 1271-1283.	2.5	25

#	Article	IF	CITATIONS
91	Generation of minimal protein identifiers of proteins from two-dimensional gels and recombinant proteins. Electrophoresis, 2002, 23, 621-625.	1.3	18
92	Protein identification and tracking in two-dimensional electrophoretic gels by minimal protein identifiers. , 0, , 97-120.		1
93	Web-accessible proteome databases for microbial research. , 0, , 63-74.		Ο
94	Protein Stable Isotope Probing. , 0, , 73-95.		0