
Ramesh Kumar Saini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1941880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review. Life Sciences, 2018, 203, 255-267.	2.0	719
2	Carotenoid extraction methods: A review of recent developments. Food Chemistry, 2018, 240, 90-103.	4.2	543
3	Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International, 2015, 76, 735-750.	2.9	531
4	Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech, 2016, 6, 203.	1.1	221
5	Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Research International, 2016, 82, 59-70.	2.9	128
6	Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants, 2022, 11, 239.	2.2	112
7	Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacological Research, 2020, 155, 104730.	3.1	105
8	Omegaâ^'3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits—A Review. Antioxidants, 2021, 10, 1627.	2.2	102
9	Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. Journal of Food Science and Technology, 2014, 51, 2176-2182.	1.4	101
10	Pro-oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence. Antioxidants, 2020, 9, 532.	2.2	99
11	Advances in Lipid Extraction Methods—A Review. International Journal of Molecular Sciences, 2021, 22, 13643.	1.8	98
12	Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Research International, 2016, 89, 1-13.	2.9	94
13	Dietary carotenoids in cancer chemoprevention and chemotherapy: A review of emerging evidence. Pharmacological Research, 2020, 157, 104830.	3.1	93
14	Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants, 2022, 11, 795.	2.2	91
15	Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 657-674.	1.4	85
16	Metabolite profiling of green, green/red, and red lettuce cultivars: Variation in health beneficial compounds and antioxidant potential. Food Research International, 2018, 105, 361-370.	2.9	82
17	An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids. Food Research International, 2018, 108, 516-529.	2.9	68
18	Dietary iron supplements and Moringa oleifera leaves influence the liver hepcidin messenger RNA expression and biochemical indices of iron status in rats. Nutrition Research, 2014, 34, 630-638.	1.3	62

RAMESH KUMAR SAINI

#	Article	IF	CITATIONS
19	Progress in Microbial Carotenoids Production. Indian Journal of Microbiology, 2017, 57, 129-130.	1.5	60
20	Carotenoid content in vegetative and reproductive parts of commercially grown Moringa oleifera Lam. cultivars from India by LC–APCI–MS. European Food Research and Technology, 2014, 238, 971-978.	1.6	59
21	Significance of Genetic, Environmental, and Pre- and Postharvest Factors Affecting Carotenoid Contents in Crops: A Review. Journal of Agricultural and Food Chemistry, 2018, 66, 5310-5324.	2.4	57
22	Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Critical Reviews in Food Science and Nutrition, 2022, 62, 6034-6054.	5.4	57
23	GCâ€FID/MS Analysis of Fatty Acids in Indian Cultivars of <i>Moringa oleifera</i> : Potential Sources of PUFA. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1029-1034.	0.8	56
24	Lutein derived from marigold (Tagetes erecta) petals triggers ROS generation and activates Bax and caspase-3 mediated apoptosis of human cervical carcinoma (HeLa) cells. Food and Chemical Toxicology, 2019, 127, 11-18.	1.8	56
25	Genetic diversity of commercially grown Moringa oleifera Lam. cultivars from India by RAPD, ISSR and cytochrome P450-based markers. Plant Systematics and Evolution, 2013, 299, 1205-1213.	0.3	53
26	Elicitors, SA and MJ enhance carotenoids and tocopherol biosynthesis and expression of antioxidant related genes in Moringa oleifera Lam. leaves. Acta Physiologiae Plantarum, 2014, 36, 2695-2704.	1.0	51
27	Rapid in vitro regeneration method for Moringa oleifera and performance evaluation of field grown nutritionally enriched tissue cultured plants. 3 Biotech, 2012, 2, 187-192.	1.1	49
28	Minimally processed ready-to-eat baby-leaf vegetables: Production, processing, storage, microbial safety, and nutritional potential. Food Reviews International, 2017, 33, 644-663.	4.3	48
29	Food science and technology for management of iron deficiency in humans: A review. Trends in Food Science and Technology, 2016, 53, 13-22.	7.8	44
30	A comprehensive study of polyphenols contents and antioxidant potential of 39 widely used spices and food condiments. Journal of Food Measurement and Characterization, 2018, 12, 1548-1555.	1.6	44
31	Efficiency of RAPD, SSR and Cytochrome P450 gene based markers in accessing genetic variability amongst finger millet (Eleusine coracana) accessions. Molecular Biology Reports, 2010, 37, 4075-4082.	1.0	39
32	Relative bioavailability of folate from the traditional food plant Moringa oleifera L. as evaluated in a rat model. Journal of Food Science and Technology, 2016, 53, 511-520.	1.4	37
33	Chemical Stability of Lycopene in Processed Products: A Review of the Effects of Processing Methods and Modern Preservation Strategies. Journal of Agricultural and Food Chemistry, 2020, 68, 712-726.	2.4	36
34	Dextran sulfate facilitates egg white protein to form transparent hydrogel at neutral pH: Structural, functional, and degradation properties. Food Hydrocolloids, 2022, 122, 107094.	5.6	35
35	Ripening improves the content of carotenoid, α-tocopherol, and polyunsaturated fatty acids in tomato (Solanum lycopersicum L.) fruits. 3 Biotech, 2017, 7, 43.	1.1	33
36	Comparative Study of Tocopherol Contents and Fatty Acids Composition in Twenty Almond Cultivars of Afghanistan. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 805-817.	0.8	31

RAMESH KUMAR SAINI

#	Article	IF	CITATIONS
37	Extraction of antioxidants and flavonoids from yuzu (Citrus junos Sieb ex Tanaka) peels: a response surface methodology study. Journal of Food Measurement and Characterization, 2017, 11, 364-379.	1.6	31
38	An efficient one-step scheme for the purification of major xanthophyll carotenoids from lettuce, and assessment of their comparative anticancer potential. Food Chemistry, 2018, 266, 56-65.	4.2	31
39	Phase behavior, thermodynamic and rheological properties of ovalbumin/dextran sulfate: Effect of biopolymer ratio and salt concentration. Food Hydrocolloids, 2021, 118, 106777.	5.6	30
40	Edible mushrooms show significant differences in sterols and fatty acid compositions. South African Journal of Botany, 2021, 141, 344-356.	1.2	28
41	Bacillus subtilis CBR05 for Tomato (Solanum lycopersicum) Fruits in South Korea as a Novel Plant Probiotic Bacterium (PPB): Implications from Total Phenolics, Flavonoids, and Carotenoids Content for Fruit Quality. Agronomy, 2019, 9, 838.	1.3	27
42	Characterization of nutritionally important phytoconstituents in minimally processed ready-to-eat baby-leaf vegetables using HPLC–DAD and GC–MS. Journal of Food Measurement and Characterization, 2016, 10, 341-349.	1.6	24
43	Profiling of nutritionally important metabolites in green/red and green perilla (Perilla frutescens) Tj ETQq1 1 0.78	4314 rgBT 2.5	- /Qyerlock 10
44	Fatty acids, tocopherols, phenolic and antioxidant properties of six citrus fruit species: a comparative study. Journal of Food Measurement and Characterization, 2017, 11, 1665-1675.	1.6	22
45	Augmentation of major isoflavones in Glycine max L. through the elicitor-mediated approach. Acta Botanica Croatica, 2013, 72, 311-322.	0.3	21
46	Bioactive compounds in hyperhydric and normal micropropagated shoots of Aronia melanocarpa (Michx.) Elliott. Industrial Crops and Products, 2016, 83, 31-38.	2.5	20
47	Fatty acid and carotenoid composition of bitter melon (Momordica charantia L.) seed arils: a potentially valuable source of lycopene. Journal of Food Measurement and Characterization, 2017, 11, 1266-1273.	1.6	20
48	Chemopreventive Effect of β-Cryptoxanthin on Human Cervical Carcinoma (HeLa) Cells Is Modulated through Oxidative Stress-Induced Apoptosis. Antioxidants, 2020, 9, 28.	2.2	19
49	How does dextran sulfate promote the egg white protein to form transparent hydrogel?the gelation mechanism and molecular force changes. Food Hydrocolloids, 2022, 133, 107901.	5.6	18
50	In vitro propagation, carotenoid, fatty acid and tocopherol content of Ajuga multiflora Bunge. 3 Biotech, 2016, 6, 91.	1.1	16
51	Micropropagation and Quantification of Bioactive Compounds in Mertensia maritima (L.) Gray. International Journal of Molecular Sciences, 2019, 20, 2141.	1.8	15
52	Phytosterol Profiling of Apiaceae Family Seeds Spices Using GC-MS. Foods, 2021, 10, 2378.	1.9	15
53	Stability of carotenoids and tocopherols in ready-to-eat baby-leaf lettuce and salad rocket during low-temperature storage. International Journal of Food Sciences and Nutrition, 2016, 67, 489-495.	1.3	14
54	Characterization of nutritionally important lipophilic constituents from brown kelp Ecklonia radiata (C. Ag.) J. Agardh. Food Chemistry, 2021, 340, 127897.	4.2	14

#	Article	IF	CITATIONS
55	Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet. Scientific Reports, 2021, 11, 9517.	1.6	14
56	Spices in the Apiaceae Family Represent the Healthiest Fatty Acid Profile: A Systematic Comparison of 34 Widely Used Spices and Herbs. Foods, 2021, 10, 854.	1.9	13
57	GC–MS and HPLC–DAD analysis of fatty acids and tocopherols in sweet peppers (Capsicum annuum L.). Journal of Food Measurement and Characterization, 2016, 10, 685-689.	1.6	12
58	Characterization of nutritionally important phytoconstituents in bitter melon (Momordica charantia) Tj ETQq0 0	0 rgBT /C 1.6	overlock 10 Tf
59	Metabolite profiling and antioxidant activities of white, red, and black rice (Oryza sativa L.) grains. Journal of Food Measurement and Characterization, 2018, 12, 2484-2492.	1.6	12
60	Cytotoxic and apoptotic potential of <i>Phyllodium elegans</i> extracts on human cancer cell lines. Bioengineered, 2019, 10, 501-512.	1.4	11
61	Red Shrimp Are a Rich Source of Nutritionally Vital Lipophilic Compounds: A Comparative Study among Edible Flesh and Processing Waste. Foods, 2020, 9, 1179.	1.9	10
62	Low Dose Astaxanthin Treatments Trigger the Hormesis of Human Astroglioma Cells by Up-Regulating the Cyclin-Dependent Kinase and Down-Regulated the Tumor Suppressor Protein P53. Biomedicines, 2020, 8, 434.	1.4	9
63	Production of bioactive compounds in cladode culture of Turbinicarpus valdezianus (H. Moeller) Glass & R. C. Foster. Industrial Crops and Products, 2019, 138, 111491.	2.5	8
64	Identification and genetic diversity analysis of Memecylon species using ISSR, RAPD and Gene-based DNA barcoding tools. Electronic Journal of Biotechnology, 2016, 24, 1-8.	1.2	7
65	Micropropagation and Subsequent Enrichment of Carotenoids, Fatty Acids, and Tocopherol Contents in Sedum dasyphyllum L. Frontiers in Chemistry, 2017, 5, 77.	1.8	7
66	Age of Laying Hens Significantly Influences the Content of Nutritionally Vital Lipophilic Compounds in Eggs. Foods, 2021, 10, 22.	1.9	7
67	Emerging Roles of Carotenoids in the Survival and Adaptations of Microbes. Indian Journal of Microbiology, 2019, 59, 125-127.	1.5	6
68	Korean Maize Hybrids Present Significant Diversity in Fatty Acid Composition: An Investigation to Identify PUFA-Rich Hybrids for a Healthy Diet. Frontiers in Nutrition, 2020, 7, 578761.	1.6	6
69	Analysis of Lipophilic Antioxidants in the Leaves of Kaempferia parviflora Wall. Ex Baker Using LC–MRM–MS and GC–FID/MS. Antioxidants, 2021, 10, 1573.	2.2	6
70	Characterization of total phenolics, antioxidant and antiplatelet activity of unpolished and polished rice varieties. Journal of Food Measurement and Characterization, 2017, 11, 236-244.	1.6	4
71	Anticancer Potential of Lipophilic Constituents of Eleven Shellfish Species Commonly Consumed in Korea. Antioxidants, 2021, 10, 1629.	2.2	4
72	Astaxanthin Sensitizes Low SOD2-Expressing GBM Cell Lines to TRAIL Treatment via Pathway Involving	2.2	4

Mitochondrial Membrane Depolarization. Antioxidants, 2022, 11, 375.