Mazhar Muhammad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1941822/publications.pdf

Version: 2024-02-01

279798 345221 74 1,636 23 citations h-index papers

g-index 74 74 74 1911 docs citations times ranked citing authors all docs

36

#	Article	IF	CITATIONS
1	Photoelectrochemical and Photoresponsive Properties of Bi ₂ S ₃ Nanotube and Nanoparticle Thin Films. Chemistry of Materials, 2010, 22, 5084-5092.	6.7	205
2	Core–Shell Vanadium Modified Titania@β-ln ₂ S ₃ Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity. ACS Applied Materials & Diterfaces, 2016, 8, 9037-9049.	8.0	69
3	Fabrication of pristine Mn ₂ O ₃ and Ag–Mn ₂ O ₃ composite thin films by AACVD for photoelectrochemical water splitting. Dalton Transactions, 2016, 45, 14928-14939.	3.3	68
4	Single step fabrication of CuO–MnO–2TiO ₂ composite thin films with improved photoelectrochemical response. RSC Advances, 2017, 7, 15885-15893.	3.6	62
5	Synthesis of Isostructural Cage Complexes of Copper with Cobalt and Nickel for Deposition of Mixed Ceramic Oxide Materials. Inorganic Chemistry, 2006, 45, 10457-10466.	4.0	48
6	Photooxidation of water by NiTiO3 deposited from single source precursor [Ni2Ti2(OEt)2(μ-OEt)6(acac)4] by AACVD. Dalton Transactions, 2009, , 3674.	3.3	45
7	Lithium, rubidium and cesium ion removal using potassium iron(III) hexacyanoferrate(II) supported on polymethylmethacrylate. Journal of Radioanalytical and Nuclear Chemistry, 2011, 288, 79-88.	1.5	45
8	Fabrication of CoTiO⟨sub⟩3⟨/sub⟩–TiO⟨sub⟩2⟨/sub⟩composite films from a heterobimetallic single source precursor for electrochemical sensing of dopamine. Dalton Transactions, 2016, 45, 10222-10232.	3.3	41
9	Effect of AACVD Processing Parameters on the Growth of Greenockite (CdS) Thin Films using a Singleâ€Source Cadmium Precursor. Chemical Vapor Deposition, 2012, 18, 191-200.	1.3	40
10	Mn2O3–4TiO2 semiconducting composite thin films for photo-electrochemical water splitting. Polyhedron, 2014, 75, 135-140.	2.2	38
11	Photoelectrocatalytic activity of Mn2O3–TiO2 composite thin films engendered from a trinuclear molecular complex. International Journal of Hydrogen Energy, 2016, 41, 9267-9275.	7.1	37
12	Some tricyclohexyltin carboxylates containing germanium: synthesis, spectral and crystallographic characterization. Applied Organometallic Chemistry, 2003, 17, 781-787.	3.5	33
13	Perovskite-Structured PbTiO3 Thin Films Grown from a Single-Source Precursor. Inorganic Chemistry, 2013, 52, 5624-5626.	4.0	32
14	Synthesis and Structural Characterization of a New Heterobimetallic Coordination Complex of Barium and Cobalt for Use as a Precursor for Chemical Vapor Deposition. Inorganic Chemistry, 2005, 44, 9207-9212.	4.0	31
15	Synthesis and characterization of silver diethyldithiocarbamate cluster for the deposition of acanthite (Ag2S) thin films for photoelectrochemical applications. Thin Solid Films, 2013, 536, 124-129.	1.8	30
16	Nitrite ion sensing properties of ZnTiO ₃ â€"TiO ₂ composite thin films deposited from a zincâ€"titanium molecular complex. New Journal of Chemistry, 2015, 39, 7442-7452.	2.8	30
17	MgTi2O5 thin films from single molecular precursor for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2017, 161, 328-337.	6.2	30
18	Hexagonal structured Zn(1â^'x)CdxO solid solution thin films: synthesis, characterization and applications in photoelectrochemical water splitting. Journal of Materials Chemistry A, 2013, 1, 5284.	10.3	29

#	Article	IF	Citations
19	Studies of bimetallic carboxylates: their synthesis, characterization, biological activity and X-ray structure. Journal of Organometallic Chemistry, 2004, 689, 899-908.	1.8	28
20	Vanadium(V) ions transport through tri-n-octyl amine cyclohexane supported liquid membranes. Separation and Purification Technology, 2007, 54, 227-233.	7.9	26
21	CdTiO3 thin films from an octa-nuclear bimetallic single source precursor by aerosol assisted chemical vapor deposition (AACVD). New Journal of Chemistry, 2012, 36, 1844.	2.8	25
22	Dye sensitized solar cell applications of CdTiO3–TiO2 composite thin films deposited from single molecular complex. Journal of Solid State Chemistry, 2015, 230, 155-162.	2.9	25
23	Single step aerosol assisted chemical vapor deposition of pâ \in "n Sn($<$ scp $>$ ii $<$ /scp $>$) oxide nanocomposite thin film electrodes for investigation of photoelectrochemical properties. New Journal of Chemistry, 2018, 42, 5256-5266.	2.8	25
24	Single phased MnZnO3 solid solution thin films for solar energy harvesting applications. Solar Energy Materials and Solar Cells, 2015, 137, 258-264.	6.2	24
25	Fabrication of Ag-ZnO composite thin films for plasmonic enhanced water splitting. Materials Chemistry and Physics, 2020, 255, 123220.	4.0	24
26	Triethanolamine–cyclohexanone supported liquid membranes study for extraction and removal of nickel ions from nickel plating wastes. Journal of Membrane Science, 2006, 283, 182-189.	8.2	23
27	Deposition and characterization of ZnO thin films from a novel hexanuclear zinc precursor. Inorganica Chimica Acta, 2008, 361, 188-194.	2.4	23
28	Semiconducting composite oxide Y ₂ CuO ₄ â€"5CuO thin films for investigation of photoelectrochemical properties. Dalton Transactions, 2014, 43, 8523-8529.	3.3	21
29	Surface Modification of Aerosol-Assisted CVD Produced TiO ₂ Thin Film for Dye Sensitised Solar Cell. International Journal of Photoenergy, 2014, 2014, 1-12.	2.5	19
30	Fabrication of CuO–1.5ZrO ₂ composite thin film, from heteronuclear molecular complex and its electrocatalytic activity towards methanol oxidation. RSC Advances, 2015, 5, 103852-103862.	3.6	19
31	Electrochemical sensing of nitrite using a copper–titanium oxide composite derived from a hexanuclear complex. RSC Advances, 2016, 6, 27852-27861.	3 . 6	19
32	Cadmium-manganese oxide composite thin films: Synthesis, characterization and photoelectrochemical properties. Materials Chemistry and Physics, 2017, 186, 286-294.	4.0	19
33	Deposition of iron titanate/titania ceramic composite thin films from a single molecular precursor. Inorganica Chimica Acta, 2011, 376, 189-194.	2.4	18
34	Cobalt titanate–cobalt oxide composite thin films deposited from heterobimetallic precursor. Applied Organometallic Chemistry, 2012, 26, 493-498.	3.5	18
35	Photoelectrochemical properties of morphology controlled manganese, iron, nickel and copper oxides nanoball thin films deposited by electric field directed aerosol assisted chemical vapour deposition. Materials Today Communications, 2015, 4, 141-148.	1.9	18
36	Effect of synergic cooperation on optical and photoelectrochemical properties of CeO2–MnO composite thin films. New Journal of Chemistry, 2016, 40, 5177-5184.	2.8	18

#	Article	IF	Citations
37	Iron–manganese–titanium (1 : 1 : 2) oxide composite thin films for improved photocurrent New Journal of Chemistry, 2017, 41, 7322-7330.	efficiency. 2.8	17
38	Pyrochlore-structured Y2Ti2O7–2TiO2 composite thin films for photovoltaic applications. Journal of the Australian Ceramic Society, 2019, 55, 921-932.	1.9	17
39	Coupled transport of chromium(III) ions across triethanolamine/cyclohexanone based supported liquid membranes for tannery waste treatment. Separation and Purification Technology, 2007, 55, 292-299.	7.9	16
40	Vysotskite structured photoactive palladium sulphide thin films from dithiocarbamate derivatives. New Journal of Chemistry, 2014, 38, 4083-4091.	2.8	16
41	Facile fabrication of CeO2–TiO2 thin films via solution based CVD and their photoelectrochemical studies. Journal of Materials Science: Materials in Electronics, 2018, 29, 13209-13219.	2.2	16
42	Hexanuclear copper–nickel and copper–cobalt complexes for thin film deposition of ceramic oxide composites. New Journal of Chemistry, 2012, 36, 911.	2.8	14
43	Study of solvent effect on structural and photoconductive behavior of ternary chalcogenides InBiS3-In2S3-Bi2S3 composite thin films deposited via AACVD. Main Group Metal Chemistry, 2019, 42, 102-112.	1.6	14
44	Thermal degradation pathways of nickel(II) bipyridine complexes to size-controlled nickel nanoparticles. Journal of Thermal Analysis and Calorimetry, 2013, 111, 93-99.	3.6	13
45	The synthesis and characterization of a hexanuclear copper–yttrium complex for deposition of semiconducting CuYO ₂ –0.5Cu ₂ O composite thin films. New Journal of Chemistry, 2015, 39, 1031-1037.	2.8	13
46	Photoelectrochemical water splitting over mesoporous CuPbI3 films prepared by electrophoretic technique. Monatshefte FÃ1⁄4r Chemie, 2017, 148, 981-989.	1.8	13
47	Optical and optoelectronic properties of morphology and structure controlled ZnO, CdO and PbO thin films deposited by electric field directed aerosol assisted CVD. Journal of Materials Science: Materials in Electronics, 2017, 28, 868-877.	2.2	13
48	Crystallographic report: Bis[3-(tri-p-tolyl)germyl-3-(o-tolyl)-propionato]dibutyltin(IV). Applied Organometallic Chemistry, 2003, 17, 801-802.	3.5	12
49	Pyrolysis mechanism of trisbipyridineiron(II) chloride to iron nanoparticles. Journal of Thermal Analysis and Calorimetry, 2012, 110, 707-713.	3.6	12
50	Low temperature and single-source synthesis of a CuO–Ba2Cu3O5+x composite: Fabrication of thin films and characterization. Polyhedron, 2009, 28, 807-811.	2.2	11
51	Nanostructured ZnO Thin Films for Optical, Electrical, and Photoelectrochemical Applications from a New Zn Complex. Industrial & Engineering Chemistry Research, 2012, 51, 16361-16368.	3.7	11
52	Copper(II) Oligomeric Derivatives for Deposition of Copper Thin Films. European Journal of Inorganic Chemistry, 2009, 2009, 1043-1050.	2.0	10
53	Structural characterization and thermal behaviour of block copolymers of polydimethylsiloxane and polyamide having trichlorogermyl pendant groups. Polymer International, 2010, 59, 1598-1605.	3.1	10
54	Electricâ€Field Aerosolâ€Assisted CVD: Synthesis, Characterization, and Properties of Tin Oxide Microballs Prepared from a Single Source Precursor. Chemical Vapor Deposition, 2015, 21, 360-368.	1.3	10

#	Article	IF	CITATIONS
55	Phyto-inspired Cu/Bi oxide-based nanocomposites: synthesis, characterization, and energy relevant investigation. RSC Advances, 2021, 11, 30510-30519.	3.6	9
56	Potassium iron(III)hexacyanoferrate(II) supported on polymethylmethacrylate ion-exchanger for removal of strontium(II). Journal of Radioanalytical and Nuclear Chemistry, 2009, 281, 393-403.	1.5	8
57	Deposition of crystalline copper films from tetranuclear copper (II) complexes without application of reducing atmosphere. Applied Organometallic Chemistry, 2010, 24, 714-720.	3.5	8
58	Fabrication of copper–zinc oxide composite thin films from single source precursor by aerosol assisted chemical vapour deposition. Polyhedron, 2008, 27, 3337-3342.	2.2	7
59	Fabrication of covalently bonded nanostructured thin films of epoxy resin and polydimethylsiloxane for oil adsorption. Polymer Bulletin, 2017, 74, 4827-4840.	3.3	7
60	Synthesis, characterization and computational study of an ilmenite-structured Ni3Mn3Ti6O18 thin film photoanode for solar water splitting. New Journal of Chemistry, 2019, 43, 11113-11124.	2.8	7
61	Lower homologues (methyl, ethyl) of diorganotin derivatives of germyl (substituted) propanoic acids: spectroscopic elucidations and biological studies. Natural Product Research, 2007, 21, 749-758.	1.8	6
62	Optical and photocatalytic properties of biomimetic cauliflowered Ca2Mn3O8–CaO composite thin films. Journal of Solid State Chemistry, 2020, 290, 121552.	2.9	6
63	A phosphine complex of copper (I) bromide as single-source precursor for the aerosol-assisted chemical vapour deposition of phosphide. Inorganica Chimica Acta, 2009, 362, 3069-3072.	2.4	5
64	Low temperature synthesis, magnetic and electrical properties of iron–magnesium superparamagnetic nanoalloy. Journal of Alloys and Compounds, 2009, 479, 97-101.	5.5	5
65	Heptanuclear zinc cluster for growth of zincite and manganese-doped zincite thin films for sensor applications. Monatshefte F¼r Chemie, 2013, 144, 285-294.	1.8	5
66	Synthesis, X-ray structural characterization and pyrolysis studies of heterobi- and heterotrimetallic molecular complexes. Transition Metal Chemistry, 2012, 37, 241-247.	1.4	4
67	Synthesis and characterization of trichlorogermyl dioic acids: crystal structures and complementary hydrogen bonding motifs in 3-(trichlorogermyl) pentanedioic acid and 2-[(trichlorogermyl)methyl]butanedioic acid. Monatshefte FÃ 1 /4r Chemie, 2008, 139, 1019-1024.	1.8	3
68	Aerosol assisted chemical vapor deposition of magnesium orthotitanate (Mg 2 TiO 4) films from a trinuclear molecular precursor. Polyhedron, 2017, 133, 179-186.	2.2	3
69	Crystal structure and theoretical investigation of bis(<i>cis</i> -1,2-diaminocyclohexane)zinc(II) tetrachloridozincate(II). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 627-630.	0.7	3
70	Fabrication, characterization, and photocatalytic performance of ternary cadmium chalcogenides $Cdln2S4 and Cd7.23Zn2.77S10-ZnS thin films. Main Group Metal Chemistry, 2021, 44, 39-50.$	1.6	3
71	Development of Yttrium and Iron Oxide Thin Films via AACVD Method for Photooxidation of Water. Russian Journal of Applied Chemistry, 2022, 95, 37-45.	0.5	3
72	Effect of particle size and alloying with different metals on 57Fe Mössbauer spectra. Hyperfine Interactions, 2009, 189, 85-95.	0.5	1

#	Article	IF	CITATIONS
73	Crystallographic report: Polymeric [3-(triphenylgermyl)-3-o-methoxyphenylpropionato]trimethyltin(IV). Applied Organometallic Chemistry, 2005, 19, 183-183.	3.5	0
74	Crystallographic report: 1,1-Diphenyl-3-(triphenylgermyl)-3-(4-chlorophenyl) propanol. Applied Organometallic Chemistry, 2005, 19, 202-202.	3.5	0