Hai-Teng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1941802/publications.pdf Version: 2024-02-01

HAI-TENC LI

#	Article	IF	CITATIONS
1	In vitro starch digestibility of buckwheat cultivars in comparison to wheat: The key role of starch molecular structure. Food Chemistry, 2022, 368, 130806.	4.2	24
2	Improving the cold water swelling properties of oat starch by subcritical ethanol-water treatment. International Journal of Biological Macromolecules, 2022, 194, 594-601.	3.6	12
3	Relation between adhesiveness and surface leachate rheological properties of cooked noodles: From the view of starch fine molecular structure. Food Research International, 2022, 155, 111111.	2.9	4
4	α-Amylase interaction with soluble fibre: Insights from diffusion experiment using fluorescence recovery after photobleaching (FRAP) and permeation experiment using ultrafiltration membrane. Bioactive Carbohydrates and Dietary Fibre, 2022, 28, 100319.	1.5	1
5	Pasting properties of high-amylose wheat in conventional and high-temperature Rapid Visco Analyzer: Molecular contribution of starch and gluten proteins. Food Hydrocolloids, 2022, 131, 107840.	5.6	7
6	Insights into the reasons for lower digestibility of buckwheat-based foods: The structure-physical properties of starch aggregates. Journal of Cereal Science, 2022, 107, 103506.	1.8	3
7	Amorphous packing of amylose and elongated branches linked to the enzymatic resistance of high-amylose wheat starch granules. Carbohydrate Polymers, 2022, 295, 119871.	5.1	9
8	Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle. Food Chemistry, 2021, 336, 127719.	4.2	55
9	Structural basis of wheat starch determines the adhesiveness of cooked noodles by affecting the fine structure of leached starch. Food Chemistry, 2021, 341, 128222.	4.2	18
10	Nutritional, phytochemical and therapeutic potential of chia seed (Salvia hispanica L.). A mini-review. Food Hydrocolloids for Health, 2021, 1, 100010.	1.6	16
11	Natural â€~capsule' in food plants: Cell wall porosity controls starch digestion and fermentation. Food Hydrocolloids, 2021, 117, 106657.	5.6	26
12	pH-Responsive Smart Wettability Surface with Dual Bactericidal and Releasing Properties. ACS Applied Materials & Interfaces, 2021, 13, 46065-46075.	4.0	18
13	Molecular-structure evolution during in vitro fermentation of granular high-amylose wheat starch is different to in vitro digestion. Food Chemistry, 2021, 362, 130188.	4.2	15
14	Starch granular protein of high-amylose wheat gives innate resistance to amylolysis. Food Chemistry, 2020, 330, 127328.	4.2	20
15	High-amylose wheat and maize starches have distinctly different granule organization and annealing behaviour: A key role for chain mobility. Food Hydrocolloids, 2020, 105, 105820.	5.6	40
16	In Vitro Starch Digestion: Mechanisms and Kinetic Models. , 2020, , 151-167.		5
17	Using starch molecular fine structure to understand biosynthesis-structure-property relations. Trends in Food Science and Technology, 2019, 86, 530-536.	7.8	86
18	Controlled gelatinization of potato parenchyma cells under excess water condition: structural and <i>in vitro</i> digestion properties of starch. Food and Function, 2019, 10, 5312-5322.	2.1	37

Hai-Teng Li

#	Article	IF	CITATIONS
19	Starch branching enzymes contributing to amylose and amylopectin fine structure in wheat. Carbohydrate Polymers, 2019, 224, 115185.	5.1	31
20	A more general approach to fitting digestion kinetics of starch in food. Carbohydrate Polymers, 2019, 225, 115244.	5.1	53
21	Altering starch branching enzymes in wheat generates high-amylose starch with novel molecular structure and functional properties. Food Hydrocolloids, 2019, 92, 51-59.	5.6	75
22	Highâ€Amylose Starches to Bridge the "Fiber Gap― Development, Structure, and Nutritional Functionality. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 362-379.	5.9	172
23	Wall porosity in isolated cells from food plants: Implications for nutritional functionality. Food Chemistry, 2019, 279, 416-425.	4.2	49
24	Autoclaved rice: The textural property and its relation to starch leaching and the molecular structure of leached starch. Food Chemistry, 2019, 283, 199-205.	4.2	24
25	Encapsulation of Lactobacillus plantarum in porous maize starch. LWT - Food Science and Technology, 2016, 74, 542-549.	2.5	67