Evan Yamasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1941426/publications.pdf Version: 2024-02-01

FUAN YAMASAKI

#	Article	IF	CITATIONS
1	STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells. ELife, 2022, 11, .	2.8	23
2	Brain endothelial cell TRPA1 channels initiate neurovascular coupling. ELife, 2021, 10, .	2.8	63
3	Nitric Oxide Signals Through IRAG to Inhibit TRPM4 Channels and Dilate Cerebral Arteries. Function, 2021, 2, zqab051.	1.1	15
4	Differential expression of angiotensin II type 1 receptor subtypes within the cerebral microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H461-H469.	1.5	17
5	The intracellular Ca ²⁺ release channel TRPML1 regulates lower urinary tract smooth muscle contractility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30775-30786.	3.3	13
6	TRPML1 channels initiate Ca ²⁺ sparks in vascular smooth muscle cells. Science Signaling, 2020, 13, .	1.6	25
7	(Pro)renin receptor knockdown in the paraventricular nucleus of the hypothalamus attenuates hypertension development and AT ₁ receptor-mediated calcium events. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1389-H1405.	1.5	25
8	Nanoscale coupling of junctophilin-2 and ryanodine receptors regulates vascular smooth muscle cell contractility. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21874-21881.	3.3	37
9	Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9745-E9752.	3.3	31
10	Junctophilinâ€2 Supports Functional Coupling Between Type 2 Ryanodine Receptors and BK Channels in Vascular Smooth Muscle Cells. FASEB Journal, 2018, 32, 843.6.	0.2	0
11	The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells. Journal of Physiology, 2017, 595, 4735-4753.	1.3	52
12	UTP activates small-conductance Ca ²⁺ -activated K ⁺ channels in murine detrusor PDGFRα ⁺ cells. American Journal of Physiology - Renal Physiology, 2015, 309, F569-F574.	1.3	13