Domenico Prattichizzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1941393/publications.pdf

Version: 2024-02-01

266 papers 8,507 citations

43 h-index 74 g-index

275 all docs

275 docs citations

times ranked

275

6336 citing authors

#	Article	IF	CITATIONS
1	Flexible scheduling and tactile communication for human–robot collaboration. Robotics and Computer-Integrated Manufacturing, 2022, 73, 102233.	6.1	16
2	Analysis of postures for handwriting on touch screens without using tools. Scientific Reports, 2022, 12, 296.	1.6	5
3	Simultaneous control of natural and extra degrees of freedom by isometric force and electromyographic activity in the muscle-to-force null space. Journal of Neural Engineering, 2022, 19, 016004.	1.8	13
4	Design and Prototyping of an Underactuated Hand Exoskeleton With Fingers Coupled by a Gear-Based Differential. Frontiers in Robotics and Al, 2022, 9, 862340.	2.0	7
5	Design and Comparison of Haptic Policies for Human Guidance. , 2022, , .		O
6	Design, Development, and Control of a Hand/Wrist Exoskeleton for Rehabilitation and Training. IEEE Transactions on Robotics, 2022, 38, 1472-1488.	7.3	21
7	The Wavejoints: A Novel Methodology to Design Soft-Rigid Grippers Made by Monolithic 3D Printed Fingers with Adjustable Joint Stiffness. , 2022, , .		7
8	Compliant gripper design, prototyping, and modeling using screw theory formulation. International Journal of Robotics Research, 2021, 40, 55-71.	5.8	23
9	Design of Personalized Wearable Haptic Interfaces to Account for Fingertip Size and shape. IEEE Transactions on Haptics, 2021, 14, 266-272.	1.8	8
10	Robot Grasp Control. , 2021, , 1885-1893.		0
11	Discrete Cosserat Approach for Closed-Chain Soft Robots: Application to the Fin-Ray Finger. IEEE Transactions on Robotics, 2021, 37, 2083-2098.	7.3	24
12	Accessible Educational Resources for Teaching and Learning Robotics. Robotics, 2021, 10, 38.	2.1	16
13	Feasibility of TMS in patients with new generation cochlear implants. Clinical Neurophysiology, 2021, 132, 723-729.	0.7	3
14	Integration of a Passive Exoskeleton and a Robotic Supernumerary Finger for Grasping Compensation in Chronic Stroke Patients: The SoftPro Wearable System. Frontiers in Robotics and Al, 2021, 8, 661354.	2.0	6
15	Reducing Face-Touches to Limit COVID-19 Outbreak: an Overview of Solutions. , 2021, , .		3
16	Detachable Robotic Grippers for Human-Robot Collaboration. Frontiers in Robotics and AI, 2021, 8, 644532.	2.0	8
17	Generating Kinesthetic Feedback Using Self Contact and Velocity Scaling. , 2021, , .		1
18	Grasp Planning With a Soft Reconfigurable Gripper Exploiting Embedded and Environmental Constraints. IEEE Robotics and Automation Letters, 2021, 6, 5215-5222.	3.3	7

#	Article	IF	Citations
19	Human augmentation by wearable supernumerary robotic limbs: review and perspectives. Progress in Biomedical Engineering, 2021, 3, 042005.	2.8	31
20	Aerial Tele-Manipulation with Passive Tool via Parallel Position/Force Control. Applied Sciences (Switzerland), 2021, 11, 8955.	1.3	4
21	Design of a Wearable Haptic Device for Hand Palm Cutaneous Feedback. Frontiers in Robotics and Al, 2021, 8, 706627.	2.0	3
22	Emerging of new bioartificial corticospinal motor synergies using a robotic additional thumb. Scientific Reports, 2021, 11, 18487.	1.6	9
23	Bilaterally Shared Haptic Perception for Human-Robot Collaboration in Grasping Operation. Journal of Robotics and Mechatronics, 2021, 33, 1104-1116.	0.5	5
24	The neural resource allocation problem when enhancing human bodies with extra robotic limbs. Nature Machine Intelligence, 2021, 3, 850-860.	8.3	34
25	Modeling a Sensorized Soft Layer for Adding Compliance to the Environment in Robotic Manipulation. Mechanisms and Machine Science, 2021, , 370-377.	0.3	4
26	A Human Gesture Mapping Method to Control a Multiâ€Functional Hand for Robotâ€Assisted Laparoscopic Surgery: The MUSHA Case. Frontiers in Robotics and Al, 2021, 8, 741807.	2.0	3
27	A Manually Actuated Robotic Supernumerary Finger To Recover Grasping Capabilities. , 2021, , .		3
28	A Modular Wearable Finger Interface for Cutaneous and Kinesthetic Interaction: Control and Evaluation. IEEE Transactions on Industrial Electronics, 2020, 67, 706-716.	5.2	39
29	Upper Body Pose Estimation Using Wearable Inertial Sensors and Multiplicative Kalman Filter. IEEE Sensors Journal, 2020, 20, 492-500.	2.4	33
30	Development of a Low-cost Glove for Thumb Rehabilitation: Design and Evaluation. , 2020, , .		1
31	Hand closure model for planning top grasps with soft robotic hands. International Journal of Robotics Research, 2020, 39, 1706-1723.	5.8	19
32	Preventing Undesired Face-Touches With Wearable Devices and Haptic Feedback. IEEE Access, 2020, 8, 139033-139043.	2.6	26
33	The Mag-Gripper: A Soft-Rigid Gripper Augmented With an Electromagnet to Precisely Handle Clothes. IEEE Robotics and Automation Letters, 2020, 5, 6591-6598.	3.3	8
34	Design, development, and preliminary evaluation of a highly wearable exoskeleton., 2020,,.		9
35	Design, Development, and Control of a Tendon-actuated Exoskeleton for Wrist Rehabilitation and Training. , 2020, , .		10
36	Operation Identification by Shared Tactile Perception Based on Skin Vibration. , 2020, , .		4

#	Article	IF	CITATIONS
37	Wearable haptic anklets for gait and freezing improvement in Parkinson's disease: a proof-of-concept study. Neurological Sciences, 2020, 41, 3643-3651.	0.9	12
38	Combining Wristband Display and Wearable Haptics for Augmented Reality. , 2020, , .		2
39	Hand Guidance Using Grasping Metaphor and Wearable Haptics. , 2020, , .		6
40	Cooperative Human-Robot Grasping With Extended Contact Patches. IEEE Robotics and Automation Letters, 2020, 5, 3121-3128.	3.3	2
41	Wearable Haptics for Remote Social Walking. IEEE Transactions on Haptics, 2020, 13, 761-776.	1.8	8
42	Design and prototyping soft–rigid tendon-driven modular grippers using interpenetrating phase composites materials. International Journal of Robotics Research, 2020, 39, 1635-1646.	5.8	45
43	Caring About the Human Operator: Haptic Shared Control for Enhanced User Comfort in Robotic Telemanipulation. IEEE Transactions on Haptics, 2020, 13, 197-203.	1.8	38
44	Grasping With the SoftPad, a Soft Sensorized Surface for Exploiting Environmental Constraints With Rigid Grippers. IEEE Robotics and Automation Letters, 2020, 5, 3884-3891.	3.3	6
45	Shared Haptic Perception for Human-Robot Collaboration. Lecture Notes in Computer Science, 2020, , 536-544.	1.0	6
46	Supernumerary Robotic Fingers to Compensate and Augment Human Manipulation Abilities. Biosystems and Biorobotics, 2020, , 188-194.	0.2	0
47	Robot Grasp Control. , 2020, , 1-8.		0
48	Instrumenting Hand-Held Surgical Drills with a Pneumatic Sensing Cover forÂHaptic Feedback. Lecture Notes in Computer Science, 2020, , 398-406.	1.0	2
49	Dexterous Manipulation., 2020,, 1-8.		4
50	Design and Prototype of Supernumerary Robotic Finger (SRF) Inspired by Fin Ray® Effect for Patients Suffering from Sensorimotor Hand Impairment. , 2019, , .		18
51	Combining Haptic and Bang-Bang Braking Actions for Passive Robotic Walker Path Following. IEEE Transactions on Haptics, 2019, 12, 542-553.	1.8	11
52	A Mathematical Model of the Pneumatic Force Sensor for Robot-assisted Surgery. , 2019, , .		7
53	The Role of Closed-Loop Hand Control in Handshaking Interactions. IEEE Robotics and Automation Letters, 2019, 4, 878-885.	3.3	16
54	Human–Robot Team Interaction Through Wearable Haptics for Cooperative Manipulation. IEEE Transactions on Haptics, 2019, 12, 350-362.	1.8	16

#	Article	IF	CITATIONS
55	Using Wearable Haptics for Thermal Discrimination in Virtual Reality Scenarios. Lecture Notes in Electrical Engineering, 2019, , 144-148.	0.3	O
56	Cross-Modal Audiovisual Modulation of Corticospinal Motor Synergies in Professional Piano Players: A TMS Study during Motor Imagery. Neural Plasticity, 2019, 2019, 1-11.	1.0	4
57	Linear Integration of Tactile and Non-tactile Inputs Mediates Estimation of Fingertip Relative Position. Frontiers in Neuroscience, 2019, 13, 68.	1.4	8
58	Human-Robot Interaction Through Fingertip Haptic Devices for Cooperative Manipulation Tasks. , 2019,		1
59	Towards a Virtual Reality Interface for Remote Robotic Teleoperation. , 2019, , .		19
60	Command Acknowledge through Tactile Feedback Improves the Usability of an EMG-based Interface for the Frontalis Muscle. , 2019, , .		4
61	Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps. Frontiers in Robotics and Al, 2019, 6, 135.	2.0	13
62	Presenting Surface Features Using a Haptic Ring: A Psychophysical Study on Relocating Vibrotactile Feedback. IEEE Transactions on Haptics, 2019, 12, 428-437.	1.8	8
63	Can Wearable Haptic Devices Foster the Embodiment of Virtual Limbs?. IEEE Transactions on Haptics, 2019, 12, 339-349.	1.8	28
64	A robotic microsurgical forceps for transoral laser microsurgery. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 321-333.	1.7	7
65	Evaluation of Grasp Stiffness inÂUnderactuated Compliant Hands Exploiting Environment Constraints. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2019, , 409-416.	0.3	3
66	Design of Multiple Wearable Robotic Extra Fingers for Human Hand Augmentation. Robotics, 2019, 8, 102.	2.1	20
67	Design Criteria for Wearable Robotic Extra–Fingers with Underactuated Modular Structure. Mechanisms and Machine Science, 2019, , 509-517.	0.3	7
68	Human Rendezvous via Haptic Suggestion. Lecture Notes in Electrical Engineering, 2019, , 262-267.	0.3	1
69	The Closure Signature: A Functional Approach to Model Underactuated Compliant Robotic Hands. IEEE Robotics and Automation Letters, 2018, 3, 2206-2213.	3.3	21
70	Design and Evaluation of a Wearable Skin Stretch Device for Haptic Guidance. IEEE Robotics and Automation Letters, 2018, 3, 524-531.	3.3	59
71	Steering and Control of Miniaturized Untethered Soft Magnetic Grippers With Haptic Assistance. IEEE Transactions on Automation Science and Engineering, 2018, 15, 290-306.	3.4	57
72	Haptic Guidance in Dynamic Environments Using Optimal Reciprocal Collision Avoidance. IEEE Robotics and Automation Letters, 2018, 3, 265-272.	3.3	29

#	Article	lF	Citations
7 3	A Three Revolute-Revolute-Spherical Wearable Fingertip Cutaneous Device for Stiffness Rendering. IEEE Transactions on Haptics, 2018, 11, 39-50.	1.8	56
74	Modeling and Prototyping of a Soft Prosthetic Hand Exploiting Joint Compliance and Modularity. , 2018, , .		13
75	Transparency-Optimal Passivity Layer Design for Time-Domain Control of Multi-DoF Haptic-Enabled Teleoperation. , 2018, , .		1
76	Rendering of Pressure and Textures Using Wearable Haptics in Immersive VR Environments. , 2018, , .		12
77	Sensory-motor augmentation of the robot with shared human perception. , 2018, , .		8
78	Efficient FEM-Based Simulation of Soft Robots Modeled as Kinematic Chains. , 2018, , .		29
79	The Tele-MAGMaS: An Aerial-Ground Comanipulator System. IEEE Robotics and Automation Magazine, 2018, 25, 66-75.	2.2	20
80	Operator Awareness in Human–Robot Collaboration Through Wearable Vibrotactile Feedback. IEEE Robotics and Automation Letters, 2018, 3, 4289-4296.	3.3	53
81	Grasp Stiffness Control in Robotic Hands Through Coordinated Optimization of Pose and Joint Stiffness. IEEE Robotics and Automation Letters, 2018, 3, 3952-3959.	3.3	22
82	A Bio-inspired Grasp Stiffness Control for Robotic Hands. Frontiers in Robotics and AI, 2018, 5, 89.	2.0	5
83	Combining Wearable Finger Haptics and Augmented Reality: User Evaluation Using an External Camera and the Microsoft HoloLens. IEEE Robotics and Automation Letters, 2018, 3, 4297-4304.	3.3	21
84	A Novel Pneumatic Force Sensor for Robot-Assisted Surgery. Lecture Notes in Computer Science, 2018, , 587-599.	1.0	8
85	Modeling and Prototyping of an Underactuated Gripper Exploiting Joint Compliance and Modularity. IEEE Robotics and Automation Letters, 2018, 3, 2854-2861.	3.3	43
86	Human Guidance: Suggesting Walking Pace Under Manual and Cognitive Load. Lecture Notes in Computer Science, 2018, , 416-427.	1.0	5
87	A Novel 3RRS Wearable Fingertip Cutaneous Device for Virtual Interaction. Lecture Notes in Electrical Engineering, 2018, , 63-65.	0.3	3
88	A Wearable Haptic Ring for the Control of Extra Robotic Fingers. Lecture Notes in Electrical Engineering, 2018, , 323-325.	0.3	5
89	Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 142-150.	2.7	64
90	Experimental evaluation of magnified haptic feedback for robotâ€assisted needle insertion and palpation. International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13, e1809.	1.2	64

#	Article	IF	Citations
91	Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications. IEEE Transactions on Haptics, 2017, 10, 511-522.	1.8	89
92	Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives. IEEE Transactions on Haptics, 2017, 10, 580-600.	1.8	486
93	A soft supernumerary robotic finger and mobile arm support for grasping compensation and hemiparetic upper limb rehabilitation. Robotics and Autonomous Systems, 2017, 93, 1-12.	3.0	35
94	High-gamma oscillations in the motor cortex during visuo-motor coordination: A tACS interferential study. Brain Research Bulletin, 2017, 131, 47-54.	1.4	36
95	Towards robotic MAGMaS: Multiple aerial-ground manipulator systems. , 2017, , .		21
96	GESTO: A Glove for Enhanced Sensing and Touching Based on Inertial and Magnetic Sensors for Hand Tracking and Cutaneous Feedback. IEEE Transactions on Human-Machine Systems, 2017, 47, 1066-1076.	2.5	61
97	Toward wearable supernumerary robotic fingers to compensate missing grasping abilities in hemiparetic upper limb. International Journal of Robotics Research, 2017, 36, 1414-1436.	5.8	52
98	Multicontact Bilateral Telemanipulation With Kinematic Asymmetries. IEEE/ASME Transactions on Mechatronics, 2017, 22, 445-456.	3.7	18
99	Cooperative Navigation for Mixed Human–Robot Teams Using Haptic Feedback. IEEE Transactions on Human-Machine Systems, 2017, 47, 462-473.	2.5	30
100	On Grasp Quality Measures: Grasp Robustness and Contact Force Distribution in Underactuated and Compliant Robotic Hands. IEEE Robotics and Automation Letters, 2017, 2, 329-336.	3.3	27
101	Design and control of a novel robotic microsurgical forceps for Transoral Laser Microsurgery. , 2017, , .		4
102	Robot team teleoperation for cooperative manipulation using wearable haptics. , 2017, , .		4
103	Teleoperation in cluttered environments using wearable haptic feedback. , 2017, , .		46
104	A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics. Frontiers in Neurorobotics, 2017, 11, 24.	1.6	102
105	Walking Ahead: The Headed Social Force Model. PLoS ONE, 2017, 12, e0169734.	1.1	91
106	An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger. Frontiers in Neurorobotics, 2016, 10, 18.	1.6	40
107	Haptic Feedback for Microrobotics Applications: A Review. Frontiers in Robotics and Al, 2016, 3, .	2.0	31
108	Experimental evaluation of co-manipulated ultrasound-guided flexible needle steering. International Journal of Medical Robotics and Computer Assisted Surgery, 2016, 12, 219-230.	1.2	25

#	Article	IF	CITATIONS
109	Multi-contact bilateral telemanipulation using wearable haptics. , 2016, , .		5
110	Grasp quality evaluation in underactuated robotic hands. , 2016, , .		11
111	Cooperative aerial tele-manipulation with haptic feedback. , 2016, , .		26
112	When Helbing meets Laumond: The Headed Social Force Model. , 2016, , .		12
113	How to Map Human Hand Synergies onto Robotic Hands Using the SynGrasp Matlab Toolbox. Springer Series on Touch and Haptic Systems, 2016, , 195-209.	0.2	1
114	The Soft-SixthFinger: a Wearable EMG Controlled Robotic Extra-Finger for Grasp Compensation in Chronic Stroke Patients. IEEE Robotics and Automation Letters, 2016, 1, 1000-1006.	3.3	90
115	Haptic Assistive Bracelets for Blind Skier Guidance. , 2016, , .		21
116	Grasping. Springer Handbooks, 2016, , 955-988.	0.3	84
117	Sensory stimulation for human guidance in robot walkers: A comparison between haptic and acoustic solutions. , 2016, , .		6
118	Haptic wrist guidance using vibrations for Human-Robot teams. , 2016, , .		21
119	Evaluation of an electromagnetic system with haptic feedback for control of untethered, soft grippers affected by disturbances. , 2016, , .		11
120	Robot-assisted microsurgical forceps with haptic feedback for transoral laser microsurgery. , 2016, 2016, 5156-5159.		6
121	On Control Interfaces for the Robotic Sixth Finger. , 2016, , .		7
122	Fingertip force estimation via inertial and magnetic sensors in deformable object manipulation. , 2016, , .		11
123	Efficient nonlinear skin simulation for multi-finger tactile rendering. , 2016, , .		6
124	The hRing: A wearable haptic device to avoid occlusions in hand tracking. , 2016, , .		67
125	Design of a wearable skin stretch cutaneous device for the upper limb. , 2016, , .		40
126	Kinesthetic and vibrotactile haptic feedback improves the performance of laser microsurgery. , 2016, , .		12

#	Article	IF	CITATIONS
127	Towards a synergy framework across neuroscience and robotics: Lessons learned and open questions. Reply to comments on: "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands― Physics of Life Reviews, 2016, 17, 54-60.	1.5	13
128	A perceptually-motivated deadband compression approach for cutaneous haptic feedback. , 2016, , .		6
129	Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Physics of Life Reviews, 2016, 17, 1-23.	1.5	191
130	Hand–tool–tissue interaction forces in neurosurgery for haptic rendering. Medical and Biological Engineering and Computing, 2016, 54, 1229-1241.	1.6	11
131	Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery. IEEE Transactions on Biomedical Engineering, 2016, 63, 278-287.	2.5	169
132	c-Walker: A Cyber-Physical System for Ambient Assisted Living. Lecture Notes in Electrical Engineering, 2016, , 75-82.	0.3	0
133	Intuitive control of self-propelled microjets with haptic feedback. Journal of Micro-Bio Robotics, 2015, 10, 37-53.	2.1	16
134	Touch the virtual reality., 2015,,.		40
135	Using inertial and magnetic sensors for hand tracking and rendering in wearable haptics. , 2015, , .		7
136	Modeling compliant grasps exploiting environmental constraints. , 2015, , .		9
137	Design guidelines for a wearable robotic extra-finger. , 2015, , .		7
138	Soft finger tactile rendering for wearable haptics. , 2015, , .		24
139	A passive guidance system for a robotic walking assistant using brakes. , 2015, , .		16
140	Evaluation of a predictive approach in steering the human locomotion via haptic feedback. , 2015, , .		10
141	SynGrasp: A MATLAB Toolbox for Underactuated and Compliant Hands. IEEE Robotics and Automation Magazine, 2015, 22, 52-68.	2.2	69
142	Using the robotic sixth finger and vibrotactile feedback for grasp compensation in chronic stroke patients. , $2015, \ldots$		36
143	Cutaneous haptic feedback to ensure the stability of robotic teleoperation systems. International Journal of Robotics Research, 2015, 34, 1773-1787.	5.8	100
144	A force-based bilateral teleoperation framework for aerial robots in contact with the environment. , 2015, , .		20

#	Article	IF	CITATIONS
145	Navigation assistance and guidance of older adults across complex public spaces: the DALiÂapproach. Intelligent Service Robotics, 2015, 8, 77-92.	1.6	58
146	Design and development of a 3RRS wearable fingertip cutaneous device. , 2015, , .		62
147	Enhancing the Performance of Passive Teleoperation Systems via Cutaneous Feedback. IEEE Transactions on Haptics, 2015, 8, 397-409.	1.8	48
148	Digital Handwriting with a Finger or a Stylus: A Biomechanical Comparison. IEEE Transactions on Haptics, 2015, 8, 356-370.	1.8	17
149	Displaying Sensed Tactile Cues with a Fingertip Haptic Device. IEEE Transactions on Haptics, 2015, 8, 384-396.	1.8	31
150	Vibrotactile haptic feedback for intuitive control of robotic extra fingers. , 2015, , .		26
151	Human-Robot Formation Control via Visual and Vibrotactile Haptic Feedback. IEEE Transactions on Haptics, 2014, 7, 499-511.	1.8	36
152	An object-based mapping algorithm to control wearable robotic extra-fingers. , 2014, , .		18
153	Improving Transparency in Teleoperation by Means of Cutaneous Tactile Force Feedback. ACM Transactions on Applied Perception, 2014, 11, 1-16.	1.2	83
154	Wearable haptics and hand tracking via an RGB-D camera for immersive tactile experiences. , 2014, , .		23
155	Effects of Kinesthetic and Cutaneous Stimulation During the Learning of a Viscous Force Field. IEEE Transactions on Haptics, 2014, 7, 251-263.	1.8	13
156	Turning a near-hovering controlled quadrotor into a 3D force effector., 2014,,.		44
157	The Sixth-Finger: A modular extra-finger to enhance human hand capabilities. , 2014, , .		66
158	Teleoperation of Steerable Flexible Needles by Combining Kinesthetic and Vibratory Feedback. IEEE Transactions on Haptics, 2014, 7, 551-556.	1.8	45
159	Sensory Subtraction in Robot-Assisted Surgery: Fingertip Skin Deformation Feedback to Ensure Safety and Improve Transparency in Bimanual Haptic Interaction. IEEE Transactions on Biomedical Engineering, 2014, 61, 1318-1327.	2.5	82
160	The flying hand: A formation of UAVs for cooperative aerial tele-manipulation. , 2014, , .		75
161	Steering of flexible needles combining kinesthetic and vibratory force feedback. , 2014, , .		6
162	The HapBand: A Cutaneous Device for Remote Tactile Interaction. Lecture Notes in Computer Science, 2014, , 284-291.	1.0	7

#	Article	IF	CITATIONS
163	A Data-Driven Approach to Remote Tactile Interaction: From a BioTac Sensor to any Fingertip Cutaneous Device. Lecture Notes in Computer Science, 2014, , 418-424.	1.0	4
164	HANDS.DVI: A Device-Independent Programming and Control Framework for Robotic Hands. Springer Tracts in Advanced Robotics, 2014, , 197-215.	0.3	0
165	HANDS.DVI: A DeVice-Independent Programming and Control Framework for Robotic HANDS. Springer Tracts in Advanced Robotics, 2014, , 197-215.	0.3	0
166	Simulation of Soft Finger Contact Model with Rolling Effects in Point-Contact Haptic Interfaces. Lecture Notes in Computer Science, 2014, , 326-333.	1.0	0
167	Task-Oriented Approach to Simulate a Grasping Action Through Underactuated Haptic Devices. Lecture Notes in Computer Science, 2014, , 249-257.	1.0	2
168	Robot Grasp Control. , 2014, , 1-9.		0
169	Virtual coupling design for stability and transparency of multi-device haptic systems with delays. , 2013, , .		3
170	SynGrasp: A MATLAB toolbox for grasp analysis of human and robotic hands. , 2013, , .		40
171	Vibrotactile stimuli for augmented haptic feedback in robot-assisted surgery. , 2013, , .		9
172	On Motion and Force Controllability of Precision Grasps with Hands Actuated by Soft Synergies. IEEE Transactions on Robotics, 2013, 29, 1440-1456.	7.3	80
173	Mapping Synergies From Human to Robotic Hands With Dissimilar Kinematics: An Approach in the Object Domain. IEEE Transactions on Robotics, 2013, 29, 825-837.	7.3	115
174	Towards Wearability in Fingertip Haptics: A 3-DoF Wearable Device for Cutaneous Force Feedback. IEEE Transactions on Haptics, 2013, 6, 506-516.	1.8	226
175	Uncalibrated visual compass from omnidirectional line images with application to attitude MAV estimation. , 2013, , .		1
176	Evaluation of grasp stiffness in underactuated compliant hands. , 2013, , .		17
177	Unicycle steering by brakes: A passive guidance support for an assistive cart., 2013,,.		11
178	On the role of cutaneous force in teleoperation: subtracting kinesthesia from complete haptic feedback. , 2013, , .		5
179	Improving transparency in passive teleoperation by combining cutaneous and kinesthetic force feedback., 2013,,.		11
180	Using Postural Synergies to Animate a Low-Dimensional Hand Avatar in Haptic Simulation. IEEE Transactions on Haptics, 2013, 6, 106-116.	1.8	20

#	Article	IF	CITATIONS
181	Visuohaptic Discrimination of 3D Gross Shape. Seeing and Perceiving, 2012, 25, 351-364.	0.4	2
182	Vibrotactile haptic feedback for human-robot interaction in leader-follower tasks. , 2012, , .		17
183	Object motion-decoupled internal force control for a compliant multifingered hand. , 2012, , .		10
184	Cutaneous Force Feedback as a Sensory Subtraction Technique in Haptics. IEEE Transactions on Haptics, 2012, 5, 289-300.	1.8	144
185	Cutaneous device for teleoperated needle insertion. , 2012, , .		10
186	A three DoFs wearable tactile display for exploration and manipulation of virtual objects. , 2012, , .		49
187	An accurate and robust visual-compass algorithm for robot-mounted omnidirectional cameras. Robotics and Autonomous Systems, 2012, 60, 1179-1190.	3.0	14
188	On a Class of Hierarchical Formations of Unicycles and Their Internal Dynamics. IEEE Transactions on Automatic Control, 2012, 57, 845-859.	3.6	21
189	On the manipulability ellipsoids of underactuated robotic hands with compliance. Robotics and Autonomous Systems, 2012, 60, 337-346.	3.0	75
190	Planar mirrors for image-based robot localization and 3-D reconstruction. Mechatronics, 2012, 22, 398-409.	2.0	31
191	Two Finger Grasping Simulation with Cutaneous and Kinesthetic Force Feedback. Lecture Notes in Computer Science, 2012, , 373-382.	1.0	53
192	Using Kinect for hand tracking and rendering in wearable haptics. , 2011, , .		138
193	KUKA Control Toolbox. IEEE Robotics and Automation Magazine, 2011, 18, 69-79.	2.2	45
194	On the role of hand synergies in the optimal choice of grasping forces. Autonomous Robots, 2011, 31, 235-252.	3.2	138
195	Force feedback in a piezoelectric linear actuator for neurosurgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7, 268-275.	1.2	37
196	Visibility maintenance via controlled invariance for leader–follower vehicle formations. Automatica, 2011, 47, 1060-1067.	3.0	29
197	A teleoperation system for micro-invasive brain surgery. Paladyn, 2010, 1, .	1.9	7
198	Observer design via Immersion and Invariance for vision-based leader–follower formation control. Automatica, 2010, 46, 148-154.	3.0	70

#	Article	IF	CITATIONS
199	RemoTouch: A system for remote touch experience. , 2010, , .		28
200	Maintaining connectivity among multiple agents in cyclic pursuit: A geometric approach. , 2010, , .		10
201	On the internal dynamics of formations of unicycle robots. , 2010, , .		0
202	Non-rigid formations of nonholonomic robots. , 2010, , .		2
203	KCT: a MATLAB toolbox for motion control of KUKA robot manipulators. , 2010, , .		21
204	Shape and weight rendering for haptic Augmented Reality. , 2010, , .		15
205	Miniaturized rigid probe driver with haptic loop control for neurosurgical interventions. , 2010, , .		7
206	Simplified design of haptic display by extending one-point kinesthetic feedback to multipoint tactile feedback. , $2010, \ldots$		66
207	Catadioptric Stereo with Planar Mirrors: Multiple-view Geometry and Camera Localization. Lecture Notes in Control and Information Sciences, 2010, , 3-21.	0.6	6
208	Using a Fingertip Tactile Device to Substitute Kinesthetic Feedback in Haptic Interaction. Lecture Notes in Computer Science, 2010, , 125-130.	1.0	31
209	Animating a Synergy-Based Deformable Hand Avatar for Haptic Grasping. Lecture Notes in Computer Science, 2010, , 203-210.	1.0	8
210	Range estimation from a moving camera: An Immersion and Invariance approach. , 2009, , .		27
211	On connectivity maintenance in linear cyclic pursuit. , 2009, , .		5
212	Planar Catadioptric Stereo: Single and multi-view geometry for calibration and localization. , 2009, , .		12
213	Stabilization of a Hierarchical Formation of Unicycle Robots with Velocity and Curvature Constraints. IEEE Transactions on Robotics, 2009, 25, 1176-1184.	7.3	48
214	Vision-Based Localization for Leader–Follower Formation Control. IEEE Transactions on Robotics, 2009, 25, 1431-1438.	7.3	141
215	Iterative estimation of the end-effector apparent gravity force for 3DoF impedance haptic devices. , 2009, , .		1
216	A Matlab-Based Remote Lab for Control and Robotics Education. , 2009, , 127-151.		1

#	Article	IF	CITATIONS
217	Leader–follower formation control of nonholonomic mobile robots with input constraints. Automatica, 2008, 44, 1343-1349.	3.0	567
218	A new approach to the cheap LQ regulator exploiting the geometric properties of the Hamiltonian system. Automatica, 2008, 44, 2834-2839.	3.0	20
219	Grasping. , 2008, , 671-700.		185
220	Dynamic Performance of Mobile Haptic Interfaces. , 2008, 24, 559-575.		20
221	Contact forces evoked by transcranial magnetic stimulation of the motor cortex in a multi-finger grasp. Brain Research Bulletin, 2008, 75, 723-736.	1.4	6
222	Editorial. Brain Research Bulletin, 2008, 75, 715-716.	1.4	0
223	Stability Analysis and Design of Multi-dimensional Haptic Systems. , 2008, , .		4
224	Vision-based range estimation via Immersion and Invariance for robot formation control., 2008,,.		5
225	Application of Kalman Filter to Remove TMS-Induced Artifacts from EEG Recordings. IEEE Transactions on Control Systems Technology, 2008, 16, 1360-1366.	3.2	44
226	On visibility maintenance via controlled invariance for leader-follower Dubins-like vehicles. , 2008, , .		4
227	Image-based Visual Servoing with Central Catadioptric Cameras. International Journal of Robotics Research, 2008, 27, 41-56.	5.8	41
228	An LMI framework for analysis and design of multi-dimensional haptic systems. , 2008, , .		6
229	Bringing Haptics to Second Life for Visually Impaired People. Lecture Notes in Computer Science, 2008, , 896-905.	1.0	28
230	Conveying virtual tactile feedback via augmented kinesthetic stimulation. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	3
231	Steering hierarchical formations of unicycle robots. , 2007, , .		1
232	Straight Line Path-Planning in Visual Servoing. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2007, 129, 541-543.	0.9	15
233	Analysis and design of multi-contact haptic systems: An LMI approach. , 2007, , .		4
234	A Geometric Characterization of Leader-Follower Formation Control. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	42

#	Article	IF	CITATIONS
235	Leader-Follower Formations: Uncalibrated Vision-Based Localization and Control. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	53
236	Uncalibrated Video Compass for Mobile Robots from Paracatadioptric Line Images., 2007,,.		7
237	Perceptual Issues in Haptic Digital Watermarking. IEEE MultiMedia, 2007, 14, 84-91.	1.5	9
238	Operating Remote Laboratories Through a Bootable Device. IEEE Transactions on Industrial Electronics, 2007, 54, 3134-3140.	5.2	20
239	Image-Based Visual Servoing for Nonholonomic Mobile Robots Using Epipolar Geometry. , 2007, 23, 87-100.		199
240	Squaring down LTI systems: A geometric approach. Systems and Control Letters, 2007, 56, 236-244.	1.3	8
241	Off-line removal of TMS-induced artifacts on human electroencephalography by Kalman filter. Journal of Neuroscience Methods, 2007, 162, 293-302.	1.3	45
242	The Haptik Library. IEEE Robotics and Automation Magazine, 2007, 14, 64-75.	2.2	31
243	A Unified Setting for Decoupling With Preview and Fixed-Lag Smoothing in the Geometric Context. IEEE Transactions on Automatic Control, 2006, 51, 809-813.	3.6	23
244	A mobile platform for haptic grasping in large environments. Virtual Reality, 2006, 10, 11-23.	4.1	16
245	A framework for bounded-time collision detection in haptic interactions. , 2006, , .		5
246	Epipole-based visual servoing for mobile robots. Advanced Robotics, 2006, 20, 255-280.	1,1	7
247	Video-Based Eye Tracking: Our Experience with Advanced Stimuli Design for Eye Tracking Software. Annals of the New York Academy of Sciences, 2005, 1039, 575-579.	1.8	4
248	EGT for multiple view geometry and visual servoing - Robotics and vision with pinhole and panoramics cameras. IEEE Robotics and Automation Magazine, 2005, 12, 26-39.	2.2	59
249	Virtual Fetal Touch Through a Haptic Interface Decreases Maternal Anxiety and Salivary Cortisol. Journal of the Society for Gynecologic Investigation, 2005, 12, 37-40.	1.9	21
250	Localization of Autonomous Underwater Vehicles by Floating Acoustic Buoys: A Set-Membership Approach. IEEE Journal of Oceanic Engineering, 2005, 30, 140-152.	2.1	104
251	The automatic control telelab: a user-friendly interface for distance learning. IEEE Transactions on Education, 2003, 46, 252-257.	2.0	131
252	A set theoretic approach for time-to-contact estimation in dynamic vision. Automatica, 2003, 39, 1037-1044.	3.0	3

#	Article	IF	CITATIONS
253	A Nested Computational Approach to the Discrete-Time Finite-Horizon LQ Control Problem. SIAM Journal on Control and Optimization, 2003, 42, 1002-1012.	1.1	15
254	Visual Servoing Along Epipoles. , 2003, , 215-231.		5
255	Geometric insight into discrete-time cheap and singular linear quadratic Riccati (LQR) problems. IEEE Transactions on Automatic Control, 2002, 47, 102-107.	3.6	33
256	Convolution profiles for right inversion of multivariable non-minimum phase discrete-time systems. Automatica, 2002, 38, 1695-1703.	3.0	53
257	Generalized Signal Decoupling Problem with Stability for Discrete-Time Systems. Journal of Optimization Theory and Applications, 2001, 111, 59-80.	0.8	6
258	Analysis and optimization of tendinous actuation for biomorphically designed robotic systems. Robotica, 2000, 18, 23-31.	1.3	31
259	Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms. IEEE Transactions on Automation Science and Engineering, 2000, 16, 336-345.	2.4	92
260	Dynamic analysis of mobility and graspability of general manipulation systems. IEEE Transactions on Automation Science and Engineering, 1998, 14, 241-258.	2.4	67
261	Robotic dexterity via nonholonomy. , 1998, , 35-49.		6
262	contact and grasp robustness measures: Analysis and experiments. Lecture Notes in Control and Information Sciences, 1997, , 83-90.	0.6	17
263	Consistent Task Specification for Manipulation Systems With General Kinematics. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1997, 119, 760-767.	0.9	35
264	2 Does Torque Minimization Yield a Stable Human Grasp?., 0,, 21-40.		10
265	An Object-Based Approach to Map Human Hand Synergies onto Robotic Hands with Dissimilar Kinematics. , 0, , .		26
266	Image-Based Visual Servoing for Mobile Robots with Catadioptric Camera. , 0, , 159-170.		0