Jorge Jesús RodrÃ-guez-Chueca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1940513/publications.pdf Version: 2024-02-01

Jorge Jesús

#	Article	IF	CITATIONS
1	Investigation of the Presence Volatile Organic Compounds (BTEX) in the Ambient Air and Biogases Produced by a Shiraz Landfill in Southern Iran. Sustainability, 2022, 14, 1040.	3.2	8
2	Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation. Water (Switzerland), 2022, 14, 564.	2.7	18
3	Effect of the water matrix and reactor configuration on Enterococcus sp. inactivation by UV-A activated PMS or H2O2. Journal of Water Process Engineering, 2022, 47, 102740.	5.6	17
4	Carbon quantum dots decorated Ag/CuFe2O4 for persulfate-assisted visible light photocatalytic degradation of tetracycline: A comparative study. Journal of Water Process Engineering, 2022, 47, 102742.	5.6	34
5	Spirulina-based carbon bio-sorbent for the efficient removal of metoprolol, diclofenac and other micropollutants from wastewater. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100720.	2.9	2
6	Photocatalytic activation of peroxymonosulfate using ilmenite (FeTiO3) for Enterococcus faecalis inactivation. Journal of Environmental Chemical Engineering, 2022, 10, 108231.	6.7	11
7	Post Covid-19 water and waste water management to protect public health and geoenvironment. Environmental Geotechnics, 2021, 8, 193-207.	2.3	28
8	Photocatalytic activation of sulfite using Fe(II) and Fe(III) for Enterococcus sp. Inactivation in urban wastewater. Chemical Engineering Journal, 2021, 408, 127326.	12.7	9
9	Evaluation of B-ZnO on photocatalytic inactivation of Escherichia coli and Enterococcus sp. Journal of Environmental Chemical Engineering, 2021, 9, 104940.	6.7	18
10	Urban and Industrial Wastewater Disinfection and Decontamination by Advanced Oxidation Processes (AOPs): Current Issues and Future Trends. Water (Switzerland), 2021, 13, 560.	2.7	4
11	UV-A activation of peroxymonosulfate for the removal of micropollutants from secondary treated wastewater. Science of the Total Environment, 2021, 770, 145299.	8.0	40
12	A meta-analysis of the scientific literature on (photo)Fenton and persulfate advanced oxidation processes: Where do we stand and where are we heading to?. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100456.	5.9	14
13	Study of the Photocatalytic Activity of TiO2 and Fe2+ in the Activation of Peroxymonosulfate. Water (Switzerland), 2021, 13, 2860.	2.7	2
14	Understanding sustainability and the circular economy through flipped classroom and challenge-based learning: an innovative experience in engineering education in Spain. Environmental Education Research, 2020, 26, 238-252.	2.9	46
15	Enhancing solar disinfection (SODIS) with the photo-Fenton or the Fe2+/peroxymonosulfate-activation process in large-scale plastic bottles leads to toxicologically safe drinking water. Water Research, 2020, 186, 116387.	11.3	36
16	Removal of Pharmaceutically Active Compounds (PhACs) in Wastewater by Ozone and Advanced Oxidation Processes. Handbook of Environmental Chemistry, 2020, , 269-298.	0.4	1
17	Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. Water (Switzerland), 2020, 12, 1431.	2.7	103
18	Microbiological quality of sewage sludge after digestion treatment: A pilot scale case of study. Journal of Cleaner Production, 2020, 254, 120101.	9.3	16

Jorge Jesús

#	Article	IF	CITATIONS
19	How does urban wastewater treatment affect the microbial quality of treated wastewater?. Chemical Engineering Research and Design, 2019, 130, 22-30.	5.6	22
20	Evaluation of transformation products from chemical oxidation of micropollutants in wastewater by photoassisted generation of sulfate radicals. Chemosphere, 2019, 226, 509-519.	8.2	30
21	Assessment of different iron species as activators of S2O82- and HSO5- for inactivation of wild bacteria strains. Applied Catalysis B: Environmental, 2019, 248, 54-61.	20.2	53
22	Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water. Applied Catalysis B: Environmental, 2019, 248, 62-72.	20.2	100
23	Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP): Thermally vs UV-assisted persulphate activation. Chemical Engineering Research and Design, 2019, 122, 94-101.	5.6	63
24	Photocatalytic Mechanisms for Peroxymonosulfate Activation through the Removal of Methylene Blue: A Case Study. International Journal of Environmental Research and Public Health, 2019, 16, 198.	2.6	15
25	Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes?. Science of the Total Environment, 2019, 652, 1051-1061.	8.0	115
26	Hybrid UV-C/microfiltration process in membrane photoreactor for wastewater disinfection. Environmental Science and Pollution Research, 2019, 26, 36080-36087.	5.3	11
27	Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes. Journal of Hazardous Materials, 2019, 372, 94-102.	12.4	81
28	Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes. Science of the Total Environment, 2018, 630, 1216-1225.	8.0	72
29	Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water (Switzerland), 2018, 10, 1828.	2.7	194
30	Treatment of winery wastewater by sulphate radicals: HSO 5 â^ /transition metal/UV-A LEDs. Chemical Engineering Journal, 2017, 310, 473-483.	12.7	79
31	Disinfection of simulated and real winery wastewater using sulphate radicals: Peroxymonosulphate/transition metal/UV-A LED oxidation. Journal of Cleaner Production, 2017, 149, 805-817.	9.3	53
32	Inactivation of pathogenic microorganisms in freshwater using HSO5â^'/UV-A LED and HSO5â^'/Mn+/UV-A LED oxidation processes. Water Research, 2017, 123, 113-123.	11.3	47
33	Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations. Environmental Science and Pollution Research, 2017, 24, 22414-22426.	5.3	27
34	<i>Escherichia coli</i> Inactivation in Fresh Water Through Photocatalysis with TiO ₂ â€Effect of H ₂ O ₂ on Disinfection Kinetics. Clean - Soil, Air, Water, 2016, 44, 515-524.	1.1	19
35	Treatment of crystallized-fruit wastewater by UV-A LED photo-Fenton and coagulation–flocculation. Chemosphere, 2016, 145, 351-359.	8.2	43
36	Inactivation of Escherichia coli in fresh water with advanced oxidation processes based on the combination of O3, H2O2, and TiO2. Kinetic modeling. Environmental Science and Pollution Research, 2015, 22, 10280-10290.	5.3	18

Jorge Jesús

#	Article	IF	CITATIONS
37	Photocatalytic discolouration of Reactive Black 5 by UV-A LEDs and solar radiation. Journal of Environmental Chemical Engineering, 2015, 3, 2948-2956.	6.7	15
38	Kinetic modeling of Escherichia coli and Enterococcus sp. inactivation in wastewater treatment by photo-Fenton and H 2 O 2 /UV–vis processes. Chemical Engineering Science, 2015, 138, 730-740.	3.8	41
39	Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields. Water Research, 2014, 60, 250-258.	11.3	30
40	Inactivation of Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli present in treated urban wastewater by coagulation—flocculation and photo-Fenton processes. Photochemical and Photobiological Sciences, 2013, 12, 864-871.	2.9	36
41	Identification of pathogen bacteria and protozoa in treated urban wastewaters discharged in the Ebro River (Spain): water reuse possibilities. Water Science and Technology, 2013, 68, 575-583.	2.5	34
42	Factorial experimental design applied to Escherichia coli disinfection by Fenton and photo-Fenton processes. Solar Energy, 2012, 86, 3260-3267.	6.1	43
43	Creativity and Innovation Skills in University STEM Education: The CHET Project Approach. , 0, , .		1