Jorge Jesðs RodrÃ-guez-Chueca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1940513/publications.pdf

Version: 2024-02-01

43 papers

1,649 citations

257450 24 h-index 40 g-index

43 all docs 43 docs citations

43 times ranked

1621 citing authors

#	Article	IF	CITATIONS
1	Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water (Switzerland), 2018, 10, 1828.	2.7	194
2	Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes?. Science of the Total Environment, 2019, 652, 1051-1061.	8.0	115
3	Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. Water (Switzerland), 2020, 12, 1431.	2.7	103
4	Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water. Applied Catalysis B: Environmental, 2019, 248, 62-72.	20.2	100
5	Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes. Journal of Hazardous Materials, 2019, 372, 94-102.	12.4	81
6	Treatment of winery wastewater by sulphate radicals: HSO 5 â^' /transition metal/UV-A LEDs. Chemical Engineering Journal, 2017, 310, 473-483.	12.7	79
7	Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes. Science of the Total Environment, 2018, 630, 1216-1225.	8.0	72
8	Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP): Thermally vs UV-assisted persulphate activation. Chemical Engineering Research and Design, 2019, 122, 94-101.	5.6	63
9	Disinfection of simulated and real winery wastewater using sulphate radicals: Peroxymonosulphate/transition metal/UV-A LED oxidation. Journal of Cleaner Production, 2017, 149, 805-817.	9.3	53
10	Assessment of different iron species as activators of S2O82- and HSO5- for inactivation of wild bacteria strains. Applied Catalysis B: Environmental, 2019, 248, 54-61.	20.2	53
11	Inactivation of pathogenic microorganisms in freshwater using HSO5â^'/UV-A LED and HSO5â^'/Mn+/UV-A LED oxidation processes. Water Research, 2017, 123, 113-123.	11.3	47
12	Understanding sustainability and the circular economy through flipped classroom and challenge-based learning: an innovative experience in engineering education in Spain. Environmental Education Research, 2020, 26, 238-252.	2.9	46
13	Factorial experimental design applied to Escherichia coli disinfection by Fenton and photo-Fenton processes. Solar Energy, 2012, 86, 3260-3267.	6.1	43
14	Treatment of crystallized-fruit wastewater by UV-A LED photo-Fenton and coagulation–flocculation. Chemosphere, 2016, 145, 351-359.	8.2	43
15	Kinetic modeling of Escherichia coli and Enterococcus sp. inactivation in wastewater treatment by photo-Fenton and H 2 O 2 /UV–vis processes. Chemical Engineering Science, 2015, 138, 730-740.	3.8	41
16	UV-A activation of peroxymonosulfate for the removal of micropollutants from secondary treated wastewater. Science of the Total Environment, 2021, 770, 145299.	8.0	40
17	Inactivation of Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli present in treated urban wastewater by coagulation—flocculation and photo-Fenton processes. Photochemical and Photobiological Sciences, 2013, 12, 864-871.	2.9	36
18	Enhancing solar disinfection (SODIS) with the photo-Fenton or the Fe2+/peroxymonosulfate-activation process in large-scale plastic bottles leads to toxicologically safe drinking water. Water Research, 2020, 186, 116387.	11.3	36

#	Article	IF	CITATIONS
19	Identification of pathogen bacteria and protozoa in treated urban wastewaters discharged in the Ebro River (Spain): water reuse possibilities. Water Science and Technology, 2013, 68, 575-583.	2.5	34
20	Carbon quantum dots decorated Ag/CuFe2O4 for persulfate-assisted visible light photocatalytic degradation of tetracycline: A comparative study. Journal of Water Process Engineering, 2022, 47, 102742.	5.6	34
21	Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields. Water Research, 2014, 60, 250-258.	11.3	30
22	Evaluation of transformation products from chemical oxidation of micropollutants in wastewater by photoassisted generation of sulfate radicals. Chemosphere, 2019, 226, 509-519.	8.2	30
23	Post Covid-19 water and waste water management to protect public health and geoenvironment. Environmental Geotechnics, 2021, 8, 193-207.	2.3	28
24	Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations. Environmental Science and Pollution Research, 2017, 24, 22414-22426.	5. 3	27
25	How does urban wastewater treatment affect the microbial quality of treated wastewater?. Chemical Engineering Research and Design, 2019, 130, 22-30.	5.6	22
26	<i>Escherichia coli</i> Inactivation in Fresh Water Through Photocatalysis with TiO ₂ â€Effect of H ₂ O ₂ on Disinfection Kinetics. Clean - Soil, Air, Water, 2016, 44, 515-524.	1.1	19
27	Inactivation of Escherichia coli in fresh water with advanced oxidation processes based on the combination of O3, H2O2, and TiO2. Kinetic modeling. Environmental Science and Pollution Research, 2015, 22, 10280-10290.	5.3	18
28	Evaluation of B-ZnO on photocatalytic inactivation of Escherichia coli and Enterococcus sp. Journal of Environmental Chemical Engineering, 2021, 9, 104940.	6.7	18
29	Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation. Water (Switzerland), 2022, 14, 564.	2.7	18
30	Effect of the water matrix and reactor configuration on Enterococcus sp. inactivation by UV-A activated PMS or H2O2. Journal of Water Process Engineering, 2022, 47, 102740.	5 . 6	17
31	Microbiological quality of sewage sludge after digestion treatment: A pilot scale case of study. Journal of Cleaner Production, 2020, 254, 120101.	9.3	16
32	Photocatalytic discolouration of Reactive Black 5 by UV-A LEDs and solar radiation. Journal of Environmental Chemical Engineering, 2015, 3, 2948-2956.	6.7	15
33	Photocatalytic Mechanisms for Peroxymonosulfate Activation through the Removal of Methylene Blue: A Case Study. International Journal of Environmental Research and Public Health, 2019, 16, 198.	2.6	15
34	A meta-analysis of the scientific literature on (photo)Fenton and persulfate advanced oxidation processes: Where do we stand and where are we heading to?. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100456.	5.9	14
35	Hybrid UV-C/microfiltration process in membrane photoreactor for wastewater disinfection. Environmental Science and Pollution Research, 2019, 26, 36080-36087.	5.3	11
36	Photocatalytic activation of peroxymonosulfate using ilmenite (FeTiO3) for Enterococcus faecalis inactivation. Journal of Environmental Chemical Engineering, 2022, 10, 108231.	6.7	11

#	Article	IF	CITATIONS
37	Photocatalytic activation of sulfite using Fe(II) and Fe(III) for Enterococcus sp. Inactivation in urban wastewater. Chemical Engineering Journal, 2021, 408, 127326.	12.7	9
38	Investigation of the Presence Volatile Organic Compounds (BTEX) in the Ambient Air and Biogases Produced by a Shiraz Landfill in Southern Iran. Sustainability, 2022, 14, 1040.	3.2	8
39	Urban and Industrial Wastewater Disinfection and Decontamination by Advanced Oxidation Processes (AOPs): Current Issues and Future Trends. Water (Switzerland), 2021, 13, 560.	2.7	4
40	Study of the Photocatalytic Activity of TiO2 and Fe2+ in the Activation of Peroxymonosulfate. Water (Switzerland), 2021, 13, 2860.	2.7	2
41	Spirulina-based carbon bio-sorbent for the efficient removal of metoprolol, diclofenac and other micropollutants from wastewater. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100720.	2.9	2
42	Removal of Pharmaceutically Active Compounds (PhACs) in Wastewater by Ozone and Advanced Oxidation Processes. Handbook of Environmental Chemistry, 2020, , 269-298.	0.4	1
43	Creativity and Innovation Skills in University STEM Education: The CHET Project Approach. , 0, , .		1